Hovgaardreece5907

Z Iurium Wiki

13%, 25.78%, 22.93%, and 21.16%, respectively. Source-specific probabilistic health risks indicated that As-related smelting activities contributed the most to non-carcinogenic risks (adults 59.03%, children 57.20%) and carcinogenic risks (adults 81.82%; children 92.33%), despite the observation that it contributed the least to the accumulation of soil PTEs (21.16%). Non-carcinogenic and carcinogenic risk showed similar trend for children and adults. Therefore, As-related smelting activities were regarded as the priority source of soil PTEs, and corresponding prevention and control strategies should be implemented to protect human health.Marine suspended particles are unique micro-habitats for diverse microbes and also hotspots of microbially metabolic activities. However, the association of bacterial pathogens, especially those carrying antibiotic resistance genes (ARGs), with these particles remain largely unknown in coastal habitats. This study investigated the distribution of pathogen-related bacteria and ARGs in particle-associated (PA) and free-living (FL) fractions of samples collected at three coastal beaches using NextGen sequencing and qPCR. Suspended particles were found to harbor significantly higher abundances of bacteria of pathogen-related genera and ARGs than their counterparts. Functional analysis of microbial community suggested that antibiotic biosynthetic pathways were also more abundant among PA microbiome comparing to FL microbial community, which further facilitated the spread of ARGs. Additionally, 13 pathogen-related genera co-occurred with ARG in PA fraction while only 2 pathogen-related genera co-occurred with ARGs in FL fraction. Overall, our research revealed suspended particles harbored more abundant pathogen-related genera and ARGs comparing with surrounding waters. Thus, suspended particles are hotspots for pathogen-related genera and ARGs and may pose a greater threat to human health in coastal beach.Pesticide showed a crucial selective pressure of antibiotic resistance genes (ARGs) in the environmental dimension, especially in the pesticide wastewater treatment process, where the information on the mobility and hosts of ARGs was very important but limited. This study tried to clarify the mobile antibiotic resistome and ARG hosts in three typical pesticide wastewater treatment plants (PWWTPs) through metagenomics. Results showed that ARGs associated with antibiotic efflux and multi-drug resistance generally dominated in the PWWTPs, and the relative abundance of ARGs was generally higher in the water phase than that in sludge phase. The mobile antibiotic resistome accounted for 43.6% ± 16.2% and 44.8% ± 18.0% of the total relative abundance of ARGs in the water phase and sludge phase, respectively. The tnpA, IS91 and intI1 were the dominant mobile genetic elements (MGEs) closely associated with ARGs. MCR-5 and MCR-9 were first identified in the PWWTPs and located together with the tnpA, tnpA2 and int2. The potential human pathogens belonging to Citrobacter, Pseudomonas, Enterobacter, Acinetobacter, and Kluyvern were the major ARG hosts in the PWWTPs. Statistical analysis indicated that microbial community contributed the most to the occurrence of antibiotic resistome, and the reduction of the major ARG hosts was crucial from the perspective of ARGs control.With the spread of COVID-19, disposable medical masks (DMMs) have become a significant source of new hazardous solid waste. Their proper disposal is not only beneficial to the safety of biological systems but also useful to achieve considerable economic value. The first step of this study was to investigate the chemical composition of DMMs. It is primarily composed of polypropylene, polyethylene terephthalate and iron, with fibrous polypropylene accounting for approximately 80% of the total weight. Then, DMMs were sulfonated and oxidised by the microwave-driven concentrated sulfuric acid within 8 min based on the fact that the concentrated sulfuric acid exhibits a good microwave absorption capacity. The co-doping of sulfur and oxygen was achieved while improving the thermal stability of DMMs. Subsequently, the self-activation pyrolysis of sulfonated and oxidised DMMs (P-SO@DMMs) was further realized in low-flow-rate argon. The specific surface area of P-SO@DMMs increased from 2.0 to 830.9 m2·g-1. P-SO@DMMs sulfur cathodes have promising electrochemical properties because of their porous structures and the synergistic effect of sulfur and oxygen co-doping. The capacity of the samples irradiated by microwave for 10 min at 0.1, 0.2, 0.5, 1, 2 and 5 C were 1313.6, 1010.9, 816.5, 634.4, 513.4 and 453.1 mAh·g-1, respectively, and after returning to 0.2 C and continuing the cycle for 50 revolutions, maintained 50.5% of the initial capacity. After 400 cycles, its capacity is 38.1% of the initial capacity at 0.5 C. It is slightly higher than the electrochemical performance of the sample treated by microwave for 8 min and significantly higher than the sample treated by 6 min. This work converts structurally complex, biohazardous DMMs into porous carbon with high specific surface area by clean and efficient microwave solvothermal and self-activating pyrolysis, which facilitates the development of carbon based materials at low cost and large scale.Solar photovoltaics (PVs) are one of the most promising renewable energy sources to solve the global environmental and energy crises. Dust agglomeration on PV panels greatly affects their operation life and power generation efficiency. In this study, the evaporation mechanism and laws of liquid bridges as well as the evaporation time and interaction forces for liquid bridges and particles are investigated. The effects of liquid bridge evaporation and its influencing factors on dust dynamic behaviour are discussed. Liquid bridge evaporation in the muddy state with small particle spacing can cause particle agglomeration on PV panels. However, it is very difficult for the capillary, the ribbon, and the pendulum states or the muddy state with large particle spacing to affect particle motion. In the muddy state, the interaction force for a small particle spacing consists of not only the liquid bridge force but also the drag force caused by liquid bridge evaporation, and that for a large particle spacing consists of only the drag force; in the other three states, the interaction force consists of only the liquid bridge force. Liquid bridge evaporation can greatly intensify particle agglomeration and even scaling processes with decreasing particle size. These findings can provide important theoretical guidance and value for engineering improvements in power generation and safe operation of PV panels.Volatile fatty acids (VFAs) are building block chemicals that can be produced through bioconversion of organic waste streams via anaerobic digestion as intermediate products. Purified VFAs are applicable in a wide range of industrial applications such as food, textiles, cosmetics, pharmaceuticals etc. production. EZM0414 price The present review focuses on VFAs recovery methods and technologies such as adsorption, distillation, extraction, gas stripping, esterification and membrane based techniques etc., while presenting a discussion of their pros and cons. Moreover, a great attention has been given to the recovery of VFAs through membrane filtration as a promising sustainable clarification, fractionation and concentration approach. In this regard, a thorough overview of factors affecting membrane filtration performance for VFAs recovery has been presented. Filtration techniques such as nanofiltration and reverse osmosis have shown to be capable of recovering over 90% of VFAs content from organic effluent steams, proving the direct effect of membrane materials/surface chemistry, pore size and solution pH in recovery success level. Overall, this review presents a new insight into challenges and potentials of membrane filtration for VFAs recovery based on the effects of factors such as operational parameters, membrane properties and effluent characteristics.Emerging contaminants continue to pose a threat to environmental quality that warrant mitigation. Novel technologies are being investigated that offer promise in their removal, yet it is important that the environmental costs of these treatments do not overshadow their benefits. With sustainability a key priority in global infrastructure development, insights into the environmental impact of new technologies is necessitated. In the present work, the environmental burden of three novel GBM (graphene-based material) filters (porous graphene, graphene oxide-based foam and hybrid combination) are quantified and compared at a flow rate of 1 m3/d by way of life cycle impact assessment with an alternative solution, an AOP-PPT (advanced oxidation process by pulsed power treatment). Initial results demonstrated negligible differences in overall environmental impact between the three GBM filter formats (7.7-7.9 pt), while significant asymmetry was observed with the AOP-PPT that incurred a total impact score of 67.9 pt.inants in municipal wastewater.The powerful owl (Ninox strenua) is a threatened apex predator that consumes mainly arboreal marsupial prey. Low density populations reside in urban landscapes where their viability is tenuous. The catalyst for this research was the reported death of eight powerful owls around Melbourne, Australia, in less than one year (2020/2021). Eighteen deceased owls were toxicologically screened. We assessed toxic metals (Mercury Hg, Lead Pb, Cadmium Cd and Arsenic As) and anticoagulant rodenticides (ARs) in liver (n = 18 owls) and an extensive range of agricultural chemicals in muscle (n = 14). Almost all agricultural chemicals were below detection limits except for p,p-DDE, which was detected in 71% of birds at relatively low levels. Toxic metals detected in some individuals were generally at low levels. However, ARs were detected in 83.3% of powerful owls. The most common second-generation anticoagulant rodenticide (SGAR) detected was brodifacoum, which was present in every bird in which a rodenticide was detected. Brodifacoum was often present at toxic levels and in some instances at potentially lethal levels. Presence of brodifacoum was detected across the complete urban-forest/agriculture gradient, suggesting widespread exposure. Powerful owls do not scavenge but prey upon arboreal marsupials, and generally not rodents, suggesting that brodifacoum is entering the powerful owl food web via accidental or deliberate poisoning of non-target species (possums). We highlight a critical need to investigate SGARs in food webs globally, and not just in species directly targeted for poisoning or their predators.The use of reclaimed water for agricultural irrigation is among the agronomic practices being increasingly valued by policy-makers, water planners, and regulators to pursue more sustainable resource management in many arid and semi-arid agricultural production areas worldwide. This practice can make additional supply available in water-scarce areas, provide crop nutrients, and reduce the disposal of wastewater to the environment, thus providing considerable agronomic and environmental benefits. However, the process for treated wastewater reuse is complex because of multiple interactions among technical, economic, environmental, and public health related aspects. In this context, the application of quantitative indices capturing agronomic, engineering, and environmental factors and their possible inter-relations enable to appraise the potential benefits and risks of treated wastewater reuse at individual project's scale and for regional policies. The present article describes a quantitative approach that utilizes a set of proposed indices to characterize various aspects affecting water and nutrient recovery for specific combinations between the characteristics of the treatment facility and the attributes of the irrigation district supplied with reclaimed water.

Autoři článku: Hovgaardreece5907 (MacKay Barlow)