Hovekincaid9367

Z Iurium Wiki

Breast cancer is diagnosed in ~0.3% of pregnant women. Studies that have addressed gestational and neonatal outcomes of chemotherapy during pregnancy have demonstrated increased gestational complications including preeclampsia and intrauterine growth retardation. We hypothesized that anthracycline-induced gestational complications could be derived from direct toxicity on the placenta vasculature. check details Pregnant ICR mice (day E12.5) were treated with doxorubicin (DXR; 8 mg/kg) or saline, while their umbilical cord blood flow was imaged by pulse-wave (PW) Doppler. Mice were euthanized on day E18.5, and their embryos and placentae were collected for further analysis. Unlike control mice, the DXR-treated mice presented an acute change in the umbilical cord's blood flow parameters (velocity time integral and heart rate interval), reduced embryos' weight, reduced placenta efficiency, and modulation in vascular-related pathways of treated placenta proteomics. Apoptosis and proliferation were also enhanced, as demonstrated by TUNEL and proliferating cell nuclear antigen (PCNA) analysis. We further examined the placentae of patients treated with epirubicin (EPI), who had been diagnosed with breast cancer during pregnancy (weeks 27-35). The immunohistochemistry of the EPI-treated human placentae showed enhanced proliferation and apoptosis as compared with matched chemo-naïve placentae, as well as reduced neovascularization (CD34). Our findings suggest that anthracycline-induced vascular insult promotes placental toxicity, and could point to potential agents designated to offset the damage and to reduce gestational complications in pregnant cancer patients.Transition metal dichalcogenides (TMCs) exhibit unique properties that make them of interest for catalysis, sensing or energy storage applications. However, few studies have been performed into nanofluids based on TMCs for heat transfer applications. In this study, nanofluids based on 2D-WS2 are prepared by liquid phase exfoliation to analyze their potential usage in concentrating solar power plants. Periodic-Density Functional Theory (DFT) calculations were performed to rationalize the success of the exfoliation process. The hydrogen bond interaction between the hydroxyl group from PEG, which acts as a surfactant, and the S atoms of the WS2 surface stabilizes the nanosheets in the fluid. Electron localization function (ELF) analysis is indicative of the stability of the S-H interaction from WS2 with the molecules of surfactant due to the tendency to interact through weak intermolecular forces of van der Waals solids. Moreover, improvements in thermal properties were also found. Isobaric specific heat increased by up to 10% and thermal conductivity improved by up to 37.3%. The high stability of the nanofluids and the thermal improvements were associated with the high surface area of WS2 nanosheets. These results suggest that these nanofluids could be a promising heat transfer fluid in concentrating solar power plants.Sepsis is a potentially life-threatening condition caused by a systemic dysregulated host response to infection. The brain is particularly susceptible to the effects of sepsis with clinical manifestations ranging from mild confusion to a deep comatose state. Sepsis-associated delirium (SAD) is a cerebral manifestation commonly occurring in patients with sepsis and is thought to occur due to a combination of neuroinflammation and disturbances in cerebral perfusion, the blood brain barrier (BBB) and neurotransmission. The neurological impairment associated with SAD can persist for months or even longer, after the initial septic episode has subsided which may impair the rehabilitation potential of sepsis survivors. Early identification and treatment of the underlying sepsis is key in the management of SAD as once present it can be difficult to control. Through the regular use of validated screening tools for delirium, cases of SAD can be identified early; this allows potentially aggravating factors to be addressed promptly. The usefulness of biomarkers, neuroimaging and electroencephalopathy (EEG) in the diagnosis of SAD remains controversial. The Society of Critical Care Medicine (SCCM) guidelines advise against the use of medications to treat delirium unless distressing symptoms are present or it is hindering the patient's ability to wean from organ support.Quantitative detection of exosomes in bio-fluids is a challenging task in a dynamic research field. The absence of a well-established reference material (RM) for method development and inter-comparison studies could be potentially overcome with artificial exosomes lab-produced biomimetic particles with morphological and functional properties close to natural exosomes. This work presents the design, development and functional characteristics of fully artificial exosomes based on tetraspanin extracellular loops-coated niosomes, produced by bio-nanotechnology methods based on supra-molecular chemistry and recombinant protein technology. Mono- and double-functionalized particles with CD9/CD63 tetraspanins have been developed and characterized from a morphological and functional point of view. Produced bio-particles showed close similarities with natural entities in terms of physical properties. Their utility for bioanalysis is demonstrated by their detection and molecular-type discrimination by enzyme-linked immunosorbent assays (ELISAs), one of the most frequent bio-analytical method found in routine and research labs. The basic material based on streptavidin-coated niosomes allows the surface functionalization with any biotinylated protein or peptide, introducing versatility. Although promising results have been reported, further optimizations and deeper characterization will help this innovative biomaterial become a robust RM for validation and development of diagnostic tools for exosomes determination.The high capacity of calcinated layered double hydroxides (LDH) to immobilize various active molecules together with their inherent gas/vapor impermeability make these nanoparticles highly promising to be applied as nanofillers for biodegradable polyester packaging. Herein, trihexyl(tetradecyl)phosphonium decanoate ionic liquid (IL) was immobilized on the surface of calcinated LDH. Thus, the synthesized nanoparticles were used for the preparation of polycaprolactone (PCL)/LDH nanocomposites. Two different methods of nanocomposite preparation were used and compared microwave-assisted in situ ring opening polymerization (ROP) of ε-caprolactone (εCL) and melt-blending. The in situ ROP of εCL in the presence of LDH nanoparticles with the immobilized IL led to homogenous nanofiller dispersion in the PCL matrix promoting formation of large PCL crystallites, which resulted in the improved mechanical, thermal and gas/water vapor barrier properties of the final nanocomposite. The surface-bonded IL thus acted as nanofiller surfactant, compatibilizer, as well as thermal stabilizer of the PCL/LDH nanocomposites.

Autoři článku: Hovekincaid9367 (Coble Katz)