Hoovershapiro6273
The concept of dielectric-laser acceleration (DLA) provides the highest gradients among breakdown-limited (nonplasma) particle accelerators and thus the potential of miniaturization. The implementation of a fully scalable electron accelerator on a microchip by two-dimensional alternating phase focusing (APF), which relies on homogeneous laser fields and external magnetic focusing in the third direction, was recently proposed. In this Letter, we generalize the APF for DLA scheme to 3D, such that stable beam transport and acceleration is attained without any external equipment, while the structures can still be fabricated by entirely two-dimensional lithographic techniques. In the new scheme, we obtain significantly higher accelerating gradients at given incident laser field by additionally exploiting the new horizontal edge. This enables ultralow injection energies of about 2.5 keV (β=0.1) and bulky high voltage equipment as used in previous DLA experiments can be omitted. DLAs have applications in ultrafast time-resolved electron microscopy and diffraction. Our findings are crucial for the miniaturization of the entire setup and pave the way towards integration of DLAs in optical fiber driven endoscopes, e.g., for medical purposes.We study theoretically and experimentally the subharmonic entrainment (SHE) breather soliton in mode-locked lasers for the first time, in which the ratio of the breather period to the round-trip time is an integer. We build a non-Hermitian degeneracy map of breather soliton, and illustrate that SHE arises between the two exceptional points (EPs). We obtain SHE at the ratio of 20, observe the evolution of breather soliton when tuning the gain and/or cavity loss, and prove that this phenomenon can improve the stability of breather soliton. Our research brings insight into the EP physics of ultrafast lasers and makes the mode-locked laser a powerful test bed for non-Hermitian degeneracy, which may open a new course in ultrafast laser research.We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its experimental implementation has remained elusive in that domain due to the difficulties in engineering strong nonlinearities. Gefitinib supplier Here, we show that a realistic three-wave mixing microwave architecture based on the superconducting nonlinear asymmetric inductive element [Frattini et al., Appl. Phys. Lett. 110, 222603 (2017)APPLAB0003-695110.1063/1.4984142] allows us to overcome this difficulty. As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure. This work highlights a practical advantage of microwave circuits with respect to optical systems for the purpose of engineering non-Gaussian states and opens the quest for continuous-variable algorithms based on few repetitions of elementary gates from the continuous-variable universal set.It is commonly accepted that a parametric amplifier can simulate a phase-preserving linear amplifier regardless of how the latter is realized [C. M. Caves et al., Phys. Rev. A 86, 063802 (2012)PLRAAN1050-294710.1103/PhysRevA.86.063802]. If true, this reduces all phase-preserving linear amplifiers to a single familiar model. Here we disprove this claim by constructing two counterexamples. A detailed discussion of the physics of our counterexamples is provided. It is shown that a Heisenberg-picture analysis facilitates a microscopic explanation of the physics. This also resolves a question about the nature of amplifier-added noise in degenerate two-photon amplification.Symmetry-breaking dynamical phase transitions (DPTs) abound in the fluctuations of nonequilibrium systems. Here, we show that the spectral features of a particular class of DPTs exhibit the fingerprints of the recently discovered time-crystal phase of matter. Using Doob's transform as a tool, we provide a mechanism to build classical time-crystal generators from the rare event statistics of some driven diffusive systems. An analysis of the Doob's smart field in terms of the order parameter of the transition then leads to the time-crystal lattice gas (TCLG), a model of driven fluid subject to an external packing field, which presents a clear-cut steady-state phase transition to a time-crystalline phase characterized by a matter density wave, which breaks continuous time-translation symmetry and displays rigidity and long-range spatiotemporal order, as required for a time crystal. A hydrodynamic analysis of the TCLG transition uncovers striking similarities, but also key differences, with the Kuramoto synchronization transition. Possible experimental realizations of the TCLG in colloidal fluids are also discussed.Selective excitation of a diffusive system's transmission eigenchannels enables manipulation of its internal energy distribution. The fluctuations and correlations of the eigenchannel's spatial profiles, however, remain unexplored so far. Here we show that the depth profiles of high-transmission eigenchannels exhibit low realization-to-realization fluctuations. Furthermore, our experimental and numerical studies reveal the existence of interchannel correlations, which are significant for low-transmission eigenchannels. Because high-transmission eigenchannels are robust and independent from other eigenchannels, they can reliably deliver energy deep inside turbid media.Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_2 at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_2 samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^3 (liquid) to 1.74 g/cm^3 (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.