Honorenyholm1745
Besides, OPP has been found to modulate the genes involved in neurotrophic activity. The evidence and proposed mechanism of OPP on the neuroprotective health may provide a comprehensive natural medicine approach to alleviate the symptoms of neurodegenerative diseases.Heat stress negatively affects several physiological and biochemical processes in grapevine plants. In this work, two new methods, calorespirometry, which has been used to determine temperature adaptation in plants, and near-infrared (NIR) spectroscopy, which has been used to determine several grapevine-related traits and to discriminate among varieties, were tested to evaluate grapevine response to high temperatures. 'Touriga Nacional' variety grapevines, inoculated or not with Rhizoglomus irregulare or Funneliformis mosseae, were used in this study. Calorespirometric parameters and NIR spectra, as well as other parameters commonly used to assess heat injury in plants, were measured before and after high temperature exposure. Growth rate and substrate carbon conversion efficiency, calculated from calorespirometric measurements, and stomatal conductance, were the most sensitive parameters for discriminating among high temperature responses of control and inoculated grapevines. The results revealed that, although this vine variety can adapt its physiology to temperatures up to 40 °C, inoculation with R. irregulare could additionally help to sustain its growth, especially after heat shocks. Therefore, the combination of calorespirometry together with gas exchange measurements is a promising strategy for screening grapevine heat tolerance under controlled conditions and has high potential to be implemented in initial phases of plant breeding programs.Wolff-Parkinson-White (WPW) syndrome is a rare abnormal condition frequently associated with paroxysmal supraventricular tachycardia (PSVT) and is described as an arrhythmia under the form of increased heartbeat. Currently, there are various possible treatments going from medicines such as adenosine and beta-blockers to cardioversion. read more The unknown causes of this condition together with the different responses to treatment in each patient make it difficult to establish the best therapeutic approach. In this context, in the current paper, we were interested in reporting the therapeutic options and their efficiency in the case of associated heart or inflammatory conditions in a 13-day-old patient.Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.Staphylococcus aureus (SA) belonging to the clonal complex 398 (CC398) took a special place within the species due to its spread throughout the world. SA CC398 is broadly separated in two subpopulations livestock-associated methicillin-resistant SA (MRSA) and human-associated methicillin-susceptible SA (MSSA). Here, we reviewed the global epidemiology of SA CC398 in human clinical infections and focused on MSSA CC398. The last common ancestor of SA CC398 was probably a human-adapted prophage φSa3-positive MSSA CC398 strain, but the multiple transmissions between human and animal made its evolution complex. MSSA and MRSA CC398 had different geographical evolutions. Although MSSA was present in several countries all over the world, it was mainly reported in China and in France with a prevalence about 20%. MSSA CC398 was frequently implicated in severe infections such as bloodstream infections, endocarditis, and bone joint infections whereas MRSA CC398 was mainly reported in skin and soft tissue. The spread of the MSSA CC398 clone is worldwide but with a heterogeneous prevalence. The prophage φSa3 played a crucial role in the adaptation to the human niche and in the virulence of MSSA CC398. However, the biological features that allowed the recent spread of this lineage are still far from being fully understood.In this paper, we introduce a novel approach to estimate the extrinsic parameters between a LiDAR and a camera. Our method is based on line correspondences between the LiDAR point clouds and camera images. We solve the rotation matrix with 3D-2D infinity point pairs extracted from parallel lines. Then, the translation vector can be solved based on the point-on-line constraint. Different from other target-based methods, this method can be performed simply without preparing specific calibration objects because parallel lines are commonly presented in the environment. We validate our algorithm on both simulated and real data. Error analysis shows that our method can perform well in terms of robustness and accuracy.Nickel slags can be produced through ferronickel preparation by the pyrometallurgical processing of laterite nickel ores; however, such techniques are underutilized at present, and serious environmental problems arise from the stockpiling of such nickel ores. In this study, a modification to the process of ferronickel preparation by the direct reduction of carbon bases in laterite nickel ores is proposed. The gangue from the ore is used as a raw material to prepare a cementitious material, with the main components of tricalcium silicate and tricalcium aluminate. By using FactSage software, thermodynamic calculations are performed to analyze the reduction of nickel and iron and the effect of reduction on the formation of tricalcium silicate and tricalcium aluminate. The feasibility of a coupled process to prepare ferronickel and cementitious materials by the direct reduction of laterite nickel ore and gangue calcination, respectively, is discussed under varying thermodynamic conditions. Different warming strategies are applied to experimentally verify the coupled reactions. The coupled preparation of ferronickel and cementitious materials with calcium silicate and calcium aluminate as the main phases in the same experimental process is realized.The material properties of thermoplastic polymer parts manufactured by the extrusion-based additive manufacturing process are highly dependent on the thermal history. Different numerical models have been proposed to simulate the thermal history of a 3D-printed part. However, they are limited due to limited geometric applicability; low accuracy; or high computational demand. Can the time-temperature history of a 3D-printed part be simulated by a computationally less demanding, fast numerical model without losing accuracy? This paper describes the numerical implementation of a simplified discrete-event simulation model that offers accuracy comparable to a finite element model but is faster by two orders of magnitude. Two polymer systems with distinct thermal properties were selected to highlight differences in the simulation of the orthotropic response and the temperature-dependent material properties. The time-temperature histories from the numerical model were compared to the time-temperature histories from a conventional finite element model and were found to match closely. The proposed highly parallel numerical model was approximately 300-500 times faster in simulating thermal history compared to the conventional finite element model. The model would enable designers to compare the effects of several printing parameters for specific 3D-printed parts and select the most suitable parameters for the part.In this work, poplar veneer (PV) rotary-cut from fast-growing polar was delignified to prepare flexible transparent poplar veneer (TPV). Lignin was gradually removed from the PV and then epoxy resin filled into the delignified PV. The study mainly concerns the effect of lignin content on microstructure, light transmittance, haze, tensile strength, and thermal stability of the PVs impregnated with epoxy resin. The results indicate that the lignin could be removed completely from the PV when the delignification time was around 8 h, which was proved by FTIR spectra and chemical component detection. Moreover, according to SEM observation and XRD testing, the porosity and crystallinity of the PVs were gradually increased with the removal of lignin. Also, the optical properties measurement indicated that the light transmittance and haze of the TPVs gradually increased, and the thermal stability also became more stable as shown by thermogravimetric analysis (TG). However, the tensile strength of the TPVs declined due to the removal of lignin. Among them, TPV8 exhibited excellent optical properties, thermal stability, and tensile strength. Consequently, it has great potential to be used as a substrate in photovoltaics, solar cells, smart windows, etc.This study investigated the potential use of spruce sawdust that was pretreated with diethylene glycol and sulfuric acid for the removal of hexavalent chromium from wastewater. The sawdust pretreatment process was conducted at different temperatures and times. The adsorbent was characterized by quantitative saccharification, scanning electron microscopy, and Brunauer-Emmet-Teller surface area analysis. Adsorption capacity was studied for both batch and column processes. The experimental adsorption isotherms were simulated using seven isotherm models, including Freundlich and Langmuir models. By using the Langmuir isotherm model, the maximal Cr(VI) adsorption capacity of organosolv-pretreated spruce sawdust (qm) was 318.3 mg g-1. Furthermore, the kinetic data were fitted to Lagergren, pseudo-second-order, and intraparticle diffusion models, revealing that the adsorption of Cr(VI) onto spruce sawdust pretreated with diethylene glycol and sulfuric acid is best represented by the pseudo-second-order kinetic model. Three kinetic models, namely, the Bohart-Adams model, Thomas model, and modified dose-response (MDR) model, were used to fit the experimental data obtained from the column experiments and to resolve the characteristic parameters. The Thomas adsorption column capacity of the sawdust was increased from 2.44 to 31.1 mg g-1 upon pretreatment, thus, demonstrating that organosolv treatment enhances the adsorption capability of the material.Thermoplastic polyurethane elastomers (TPUs) are widely used in a variety of applications as a result of flexible and superior performance. However, few scholars pay close attention on the design and synthesis of TPUs through the self-determined laboratory process, especially on definite of chemical structures and upon the influence on properties. To investigate the properties of synthesized modifier based on chemical structure, firstly each kind of unknown structure and composition ratio of TPUs was determined by using a new method. Furthermore, the thermal characteristics and mechanical properties of modifiers were exposed by thermal characteristics and mechanics performance tests. The experimental results indicate that TPUs for use as an asphalt modifier can successfully be synthesized with the aid of semi-prepolymer method. The linear backbone structure of TPUs with different hard segment contents were determined by micro test methods. The polyester-based TPUs had thermal behavior better than the polyether-based TPUs; conversely, the low temperature performance of polyether-based TPUs was superior.