Holstduncan0848
Consistent with these findings, compounds that inhibit mitochondrial translation or replication had a greater effect on the growth of metastasis-derived cells. Finally, mice with established tumors developed fewer metastases upon treatment with phenformin in vivo. These results suggest that the metastatic cell state in lung adenocarcinoma is associated with a specifically altered mitochondrial functionality that can be therapeutically exploited.Sepsis initiates simultaneous pro- and anti-inflammatory processes, the pattern and intensity of which vary over time. The inability to evaluate the immune status of patients with sepsis in a rapid and quantifiable manner has undoubtedly been a major reason for the failure of many therapeutic trials. Although there has been considerable effort to immunophenotype septic patients, these methods have often not accurately assessed the functional state of host immunity, lack dynamic range, and are more reflective of molecular processes rather than host immunity. In contrast, ELISpot assay measures the number and intensity of cytokine-secreting cells and has excellent dynamic range with rapid turnaround. We investigated the ability of a (to our knowledge) novel whole blood ELISpot assay and compared it with a more traditional ELISpot assay using PBMCs in sepsis. IFN-γ and TNF-α ELISpot assays on whole blood and PBMCs were undertaken in control, critically ill nonseptic, and septic patients. Whole blood ELISpot was easy to perform, and results were generally comparable to PBMC-based ELISpot. However, the whole blood ELISpot assay revealed that nonmonocyte, myeloid populations are a significant source of ex vivo TNF-α production. Septic patients who died had early, profound, and sustained suppression of innate and adaptive immunity. A cohort of septic patients had increased cytokine production compared with controls consistent with either an appropriate or excessive immune response. IL-7 restored ex vivo IFN-γ production in septic patients. The whole blood ELISpot assay offers a significant advance in the ability to immunophenotype patients with sepsis and to guide potential new immunotherapies.Protein arginine methyltransferase-1 (PRMT1) is an important epigenetic regulator of cell function and contributes to inflammation and remodeling in asthma in a cell type-specific manner. Disease-specific expression patterns of microRNAs (miRNA) are associated with chronic inflammatory lung diseases, including asthma. The de novo synthesis of miRNA depends on the transcription of primary miRNA (pri-miRNA) transcript. This study assessed the role of PRMT1 on pri-miRNA to mature miRNA process in lung epithelial cells. Human airway epithelial cells, BEAS-2B, were transfected with the PRMT1 expression plasmid pcDNA3.1-PRMT1 for 48 h. Expression profiles of miRNA were determined by small RNA deep sequencing. Comparing these miRNAs with datasets of microarrays from five asthma patients (Gene Expression Omnibus dataset), 12 miRNAs were identified that related to PRMT1 overexpression and to asthma. The overexpression or knockdown of PRMT1 modulated the expression of the asthma-related miRNAs and their pri-miRNAs. Coimmunoprecipitation showed that PRMT1 formed a complex with STAT1 or RUNX1 and thus acted as a coactivator, stimulating the transcription of pri-miRNAs. Stimulation with TGF-β1 promoted the interaction of PRMT1 with STAT1 or RUNX1, thereby upregulating the transcription of two miRNAs let-7i and miR-423. Subsequent chromatin immunoprecipitation assays revealed that the binding of the PRMT1/STAT1 or PRMT1/RUNX1 coactivators to primary let-7i (pri-let-7i) and primary miR (pri-miR) 423 promoter was critical for pri-let-7i and pri-miR-423 transcription. This study describes a novel role of PRMT1 as a coactivator for STAT1 or RUNX1, which is essential for the transcription of pri-let-7i and pri-miR-423 in epithelial cells and might be relevant to epithelium dysfunction in asthma.IFN regulatory factor 3 (IRF3) is a transcription factor that is activated by multiple pattern-recognition receptors. We demonstrated previously that IRF3 plays a detrimental role in a severe mouse model of sepsis, induced by cecal ligation and puncture. In this study, we found that IRF3-knockout (KO) mice were greatly protected from sepsis in a clinically relevant version of the cecal ligation and puncture model incorporating crystalloid fluids and antibiotics, exhibiting improved survival, reduced disease score, lower levels of serum cytokines, and improved phagocytic function relative to wild-type (WT) mice. Computational modeling revealed that the overall complexity of the systemic inflammatory/immune network was similar in IRF3-KO versus WT septic mice, although the tempo of connectivity differed. Furthermore, the mediators driving the network differed TNF-α, IL-1β, and IL-6 predominated in WT mice, whereas MCP-1 and IL-6 predominated in IRF3-KO mice. Network analysis also suggested differential IL-6-related inflammatory programs in WT versus IRF3-KO mice. We created bone marrow chimeras to test the role of IRF3 within leukocytes versus stroma. Surprisingly, chimeras with IRF3-KO bone marrow showed little protection from sepsis, whereas chimeras with IRF3-KO stroma showed a substantial degree of protection. We found that WT and IRF3-KO macrophages had a similar capacity to produce IL-6 and phagocytose bacteria in vitro. CDK4/6-IN-6 Adoptive transfer experiments demonstrated that the genotype of the host environment affected the capacity of monocytes to produce IL-6 during sepsis. Thus, IRF3 acts principally within the stromal compartment to exacerbate sepsis pathogenesis via differential impacts on IL-6-related inflammatory programs.Signal peptide peptidase-like 2a (SPPL2a) is an aspartyl intramembrane protease essential for degradation of the invariant chain CD74. In humans, absence of SPPL2a leads to Mendelian susceptibility to mycobacterial disease, which is attributed to a loss of the dendritic cell (DC) subset conventional DC2. In this study, we confirm depletion of conventional DC2 in lymphatic tissues of SPPL2a-/- mice and demonstrate dependence on CD74 using SPPL2a-/- CD74-/- mice. Upon contact with mycobacteria, SPPL2a-/- bone marrow-derived DCs show enhanced secretion of IL-1β, whereas production of IL-10 and IFN-β is reduced. These effects correlated with modulated responses upon selective stimulation of the pattern recognition receptors TLR4 and Dectin-1. In SPPL2a-/- bone marrow-derived DCs, Dectin-1 is redistributed to endosomal compartments. Thus, SPPL2a deficiency alters pattern recognition receptor pathways in a CD74-dependent way, shifting the balance from anti- to proinflammatory cytokines in antimycobacterial responses.