Holmvargas6152

Z Iurium Wiki

In this review, we aim to summarize the studies that associate the tissue microbiome, rather than gut microbiome, with cancer and other diseases using whole-transcriptome analysis, along with 16S rRNA analysis. After providing several case studies for each relationship, we will discuss the potential role of transcriptome analysis on the broader portrayal of the pathophysiology of the breast, brain, and vaginal microbiome.

Circular RNAs (circRNAs) are described as endogenous non-coding RNAs that have been reported to play important roles in the development and progression of cancers. This study aimed to reveal the circRNA-related regulatory mechanism in esophageal squamous cell carcinoma (ESCC).

A genome-wide circRNA microarray assay was performed to profile the expression of circRNAs in the blood of preoperative ESCC patients and healthy controls. A systematic method of data mining was performed to identify the differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) based on the metaMA and RankProd analysis. Bioinformatics analyses and multiple tools were employed to construct the potential circRNA-miRNA-mRNA regulatory network.

Thirty-three differentially expressed circRNAs were identified in the ESCC blood, including 31 downregulated and two upregulated circRNAs in the blood of ESCC patients compared with the healthy controls. Twenty-three DEmiRs and 2,220 DEGs were obtained by the integration of microarray datasets. An ESCC-associated circRNA-miRNA-mRNA network was constructed based on 31 circRNAs, 3 DEmiRs, and 190 DEGs. Enrichment analyses indicated that the DEGs were associated with a series of biological processes and cancer-related pathways. The protein-protein interaction (PPI) network was generated by the 190 DEGs, with 10 hub genes verified in the network. Subsequently, a sub-network was established for ESCC, which included 29 circRNAs, 2 miRNAs, and 10 hub genes.

Our study provided a novel clue to help understand the circRNA-miRNA-mRNA regulatory mechanism, highlighting the potential roles of circRNAs in the pathogenesis and development of ESCC.

Our study provided a novel clue to help understand the circRNA-miRNA-mRNA regulatory mechanism, highlighting the potential roles of circRNAs in the pathogenesis and development of ESCC.Beef cattle raised under grass-fed and grain-fed have many differences, including metabolic efficiency and meat quality. To investigate these two regimens' intrinsic influence on beef cattle, we used high-throughput sequencing and metabolomics analyses to explore differentially expressed genes (DEGs) and metabolimic networks in the liver. A total of 200 DEGs, 76 differentially expressed miRNAs (DEmiRNAs), and two differentially expressed lncRNAs (DElncRNAs) were detected between regimen groups. Metabolic processes and pathways enriched functional genes including target genes of miRNAs and lncRNAs. We found that many genes were involved in energy, retinol and cholesterol metabolism, and bile acid synthesis. Combined with metabolites such as low glucose concentration, high cholesterol concentration, and increased primary bile acid concentration, these genes were mainly responsible for lowering intramuscular fat, low cholesterol, and yellow meat in grass-fed cattle. Additionally, we identified two lncRNAs and eight DEGs as potential competing endogenous RNAs (ceRNAs) to bind miRNAs by the interaction network analysis. These results revealed that the effects of two feeding regimens on beef cattle were mainly induced by gene expression changes in metabolic pathways mediated via lncRNAs, miRNAs, and ceRNAs, and contents of metabolites in the liver. It may provide a clue on feeding regimens inducing the metabolic regulations.Most indigenous pig resources are known to originate from China. Thus, establishing conservation priorities for these local breeds is very essential, especially in the case of limited conservation funds. Therefore, in this study, we analyzed 445 individuals belonging to six indigenous breeds from the Taihu Lake Region, using a total of 131,300 SNPs. In order to determine the long-term guidelines for the management of these breeds, we analyzed the level of diversity in the metapopulation following a partition of diversity within and between breed subpopulations, using both measures of genic and allelic diversity. MTP-131 datasheet From the study, we found that the middle Meishan (MMS) pig population contributes the most (22%) to the total gene diversity while the Jiaxing black (JX) pig population contributes the most (27%) to the gene diversity between subpopulations. Most importantly, when we consider one breed is removed from the meta-population, the first two breeds prioritized should be JX pig breed and Fengjing pig breed followed by small Meishan (SMS), Mizhu (MI), and Erhualian (EH) if we pay more attention to the gene diversity between subpopulations. However, if the priority focus is on the total gene diversity, then the first breed to be prioritized would be the Shawutou (SW) pig breed followed by JX, MI, EH, and Fengjing (FJ). Furthermore, we noted that if conservation priority is to be based on the allelic diversity between subpopulations, then the MI breed should be the most prioritized breed followed by SW, Erhuanlian, and MMS. Summarily, our data show that different breeds have different contributions to the gene and allelic diversity within subpopulations as well as between subpopulations. Our study provides a basis for setting conservation priorities for indigenous pig breeds with a focus on different priority criteria.The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability.

Autoři článku: Holmvargas6152 (Mcbride Castro)