Holmgaardsheridan6015
The National Institutes of Health (NIH) launched the Rapid Acceleration of Diagnostics (RADxSM) Tech initiative to support the development and commercialization of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) point-of-care test devices. The primary objective of the Clinical Studies Core (CSC) was to perform SARS-CoV-2 device studies involving diverse populations and settings. Within a few months, the infrastructure for clinical studies was developed, including a master protocol, digital study platform, data management system, single IRB, and multi-site partnerships. Data from some studies are being used to support Emergency Use Authorization of novel SARS-CoV-2 test devices. The CSC reduced the typical time and cost of developing medical devices and highlighted the impactful role of academic and NIH partnership in addressing public health needs at a rapid pace during a global pandemic. The structure, deployment, and lessons learned from this experience are widely applicable to future in vitro diagnostic device clinical studies.Faced with the COVID-19 pandemic, the US system for developing and testing technologies was challenged in unparalleled ways. This article describes the multi-institutional, transdisciplinary team of the "RADxSM Tech Test Verification Core" and its role in expediting evaluations of COVID-19 testing devices. Tranilast mw Expertise related to aspects of diagnostic testing was coordinated to evaluate testing devices with the goal of significantly expanding the ability to mass screen Americans to preserve lives and facilitate the safe return to work and school. Focal points included laboratory and clinical device evaluation of the limit of viral detection, sensitivity, and specificity of devices in controlled and community settings; regulatory expertise to provide focused attention to barriers to device approval and distribution; usability testing from the perspective of patients and those using the tests to identify and overcome device limitations, and engineering assessment to evaluate robustness of design including human factors, manufacturability, and scalability.The NIH Rapid Acceleration of Diagnostics (RADxSM) Tech Program was created to speed the development, validation, and commercialization of innovative point-of-care (POC) and home-based tests, and to improve clinical laboratory tests, that can directly detect SARS-CoV-2. Leveraging the experience of the Point-of-Care Technologies Research Network, a Clinical Review Committee (CRC) composed of clinicians, bioengineers, regulatory experts, and laboratorians was created to provide structured feedback to SARS-CoV-2 diagnostic innovators. The CRC convened 53 meetings with 49 companies offering SARS-CoV-2 tests in POC and reference laboratory formats as well as collection materials. link2 The CRC identified common barriers to device design finalization including biosafety, workflow, result reporting, regulatory requirements, sample type, supply chain, limit of detection, lack of relevant validation data, and price-performance-use mismatch. Feedback from companies participating was positive.The RADxSM Tech program was a unique funding and support mechanism to accelerate the market introduction of diagnostic tests for SARS-CoV-2, the virus that causes COVID-19. In addition to providing funding, the RADx Tech program provided unprecedented levels of non- monetary support. Applications were evaluated using a deep dive process which involved a 1- to 2-week intensive collaboration between the applicant and a team of experts from RADx Tech. The result of this deep dive was a very comprehensive understanding of the potential and risks associated with the proposed work, which was far beyond what can typically be understood in a written grant application. This detail allowed the deep dive team to provide a better-informed recommendation on how to proceed. In some instances, the recommendation was made to not fund the project; in other cases, the recommendation was made to provide the applicant with more funding or support to help maximize their probability of success. After the deep dive, the project moved to a Work Package 1 (WP1) phase that focused on further de-risking. The same RADx Tech team that conducted the deep dive also worked with the applicant through the WP1 phase of the program. This allowed for joint responsibility of the work with the common goal of rapid, successful product introduction.The RADxSM Tech initiative required a massive mobilization of the biomedical community. It was chartered with the extremely ambitious goal of rapidly developing and deploying innovative tests to detect people infected with the SARS-CoV-2 virus. It needed to do so at a scale and with urgency to get the country back to daily activities such as school and work as soon as possible. It required forming and supporting a diversity of teams with members from around the country and beyond. These teams collaborated in complex workflows that needed to be carefully monitored and tracked. This paper describes the key elements of the secure, web-based infrastructure that was configured to enable the efficient and effective operation of RADx Tech's key processes and address its unique and urgent challenges. One such challenge was to manage the flow of applications through a multi-stage, interactive selection process (using the CoLab platform) and another was to support and facilitate the progress of projects selected for support and funding through an accelerated commercialization program (using the GAITS platform).Goal The aim of the study herein reported was to review mobile health (mHealth) technologies and explore their use to monitor and mitigate the effects of the COVID-19 pandemic. Methods A Task Force was assembled by recruiting individuals with expertise in electronic Patient-Reported Outcomes (ePRO), wearable sensors, and digital contact tracing technologies. Its members collected and discussed available information and summarized it in a series of reports. Results The Task Force identified technologies that could be deployed in response to the COVID-19 pandemic and would likely be suitable for future pandemics. Criteria for their evaluation were agreed upon and applied to these systems. Conclusions mHealth technologies are viable options to monitor COVID-19 patients and be used to predict symptom escalation for earlier intervention. These technologies could also be utilized to monitor individuals who are presumed non-infected and enable prediction of exposure to SARS-CoV-2, thus facilitating the prioritization of diagnostic testing.Goal The purpose of this article is to introduce a new strategy to identify areas with high human density and mobility, which are at risk for spreading COVID-19. Crowded regions with actively moving people (called at-risk regions) are susceptible to spreading the disease, especially if they contain asymptomatic infected people together with healthy people. link3 Methods Our scheme identifies at-risk regions using existing cellular network functionalities-handover and cell (re)selection-used to maintain seamless coverage for mobile end-user equipment (UE). The frequency of handover and cell (re)selection events is highly reflective of the density of mobile people in the area because virtually everyone carries UEs. Results These measurements, which are accumulated over very many UEs, allow us to identify the at-risk regions without compromising the privacy and anonymity of individuals. Conclusions The inferred at-risk regions can then be subjected to further monitoring and risk mitigation.Goal As the Coronavirus Pandemic of 2019/2020 unfolds, a COVID-19 'Immunity Passport' has been mooted as a way to enable individuals to return back to work. While the quality of antibody testing, the availability of vaccines, and the likelihood of even attaining COVID-19 immunity continue to be researched, we address the issues involved in providing tamper-proof and privacy-preserving certification for test results and vaccinations. Methods We developed a prototype mobile phone app and requisite decentralized server architecture that facilitates instant verification of tamper-proof test results. Personally identifiable information is only stored at the user's discretion, and the app allows the end-user selectively to present only the specific test result with no other personal information revealed. The architecture, designed for scalability, relies upon (a) the 2019 World Wide Web Consortium standard called 'Verifiable Credentials', (b) Tim Berners-Lee's decentralized personal data platform 'Solid', and (c) a Consortium Ethereum-based blockchain. Results Our mobile phone app and decentralized server architecture enable the mixture of verifiability and privacy in a manner derived from public/private key pairs and digital signatures, generalized to avoid restrictive ownership of sensitive digital keys and/or data. Benchmark performance tests show it to scale linearly in the worst case, as significant processing is done locally on each app. For the test certificate Holder, Issuer (e.g. healthcare staff, pharmacy) and Verifier (e.g. employer), it is 'just another app' which takes only minutes to use. Conclusions The app and decentralized server architecture offer a prototype proof of concept that is readily scalable, applicable generically, and in effect 'waiting in the wings' for the biological issues, plus key ethical issues raised in the discussion section, to be resolved.Human coronavirus (HCoV) causes potentially fatal respiratory disease. Pregnancy is a physiological state that predisposes women to viral infection. In this review, we aim to present advances in the pathogenesis, clinical features, diagnosis, and treatment in HCoV in pregnancy. We retrieved information from the Pubmed database up to June 2020, using various search terms and relevant words, including coronaviruses, severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, 2019 coronavirus disease, and pregnancy. Both basic and clinical studies were selected. We found no evidence that pregnant women are more susceptible to HCoV infection or that those with HCoV infection are more prone to developing severe pneumonia. There is also no confirmed evidence of vertical mother-to-child transmission of HcoV infection during maternal HCoV infection. Those diagnosed with infection should be promptly admitted to a negative-pressure isolation ward, preferably in a designated hospital with adequate facilities and multi-disciplinary expertise to manage critically ill obstetric patients. Antiviral treatment has been routinely used to treat pregnant women with HCoV infection. The timing and mode of delivery should be individualized, depending mainly on the clinical status of the patient, gestational age, and fetal condition. Early cord clamping and temporary separation of the newborn for at least 2 weeks is recommended. All medical staff caring for patients with HCoV infection should use personal protective equipment. This review highlights the advances in pathogenesis, maternal-fetal outcome, maternal-fetal transmission, diagnosis and treatment in HCoV including severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and coronavirus disease 2019 in pregnancy.