Holmeskrabbe5306

Z Iurium Wiki

5%). The adherence to the protocol was 92,5%. The main cause of non-compliance was the time of onset (40.9%), followed by the choice of the antibiotic (35.2%). The effect of inadequate prophylaxis on the incidence of infection was RR = 0.9; 95% CI 0.2-3.9; p> 0.05. CONCLUSIONS The adequacy of antibiotic prophylaxis was very high, with a low incidence of surgical site infection. No association was found between adequacy of prophylaxis and incidence of infection in hysterectomy. The continuous improvement of epidemiological surveillance in gynecology should be emphasized. ©The Author 2020. Published by Sociedad Española de Quimioterapia. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)(https//creativecommons.org/licenses/by-nc/4.0/).The objective of this study was to identify molecular responses in Ditylenchus destructor to cold and desiccation by means of transcriptomes analyses. DMAMCL cell line A total of 102,517 unigenes were obtained, with an average length of 1,076 bp, in which 58,453 (57%) had a functional annotation. A total of 1154 simple sequence repeats (SSRs) distributed over 1078 unigenes were detected. Gene expression profiles in response to cold and desiccation stress and the expression of specific stress-related genes were compared. Gene ontology analysis and pathway-based analysis were used to further investigate the functions of the differentially expressed genes. The reliability of the sequencing data was verified through quantitative real-time PCR analysis of 19 stress-related genes. RNA interference used to further assess the functions of the cold-related unigenes 15628 and 15596 showed that the knockdown of each of these genes led to decreased cold tolerance of D. destructor. Hence, this study revealed molecular processes and pathways active in cold- or dessication-treated nematodes. The transcriptome profiles presented in this study provide insight into the transcriptome complexity and will contribute to further understand stress tolerance in D. destructor.Hemicellulose and cellulose are essential polysaccharides for plant development and major components of cell wall. They are also an important energy source for the production of ethanol from plant biomass, but their conversion to fermentable sugars is hindered by the complex structure of cell walls. The glucuronic acid substitution of xylan (GUX) enzymes attach glucuronic acid to xylan, a major component of hemicellulose, decreasing the efficiency of enzymes used for ethanol production. Since loss-of-function gux mutants of Arabidopsis thaliana enhance enzyme accessibility and cell wall digestion without adverse phenotypes, GUX genes are potential targets for genetically improving energy crops. However, comprehensive identification of GUX in important species and their evolutionary history are largely lacking. Here, we identified putative GUX proteins using hidden Markov model searches with the GT8 domain and a GUX-specific motif, and inferred the phylogenetic relationship of 18 species with Maximum likelihood and Bayesian approaches. Each species presented a variable number of GUX, and their evolution can be explained by a mixture of divergent, concerted and birth-and-death evolutionary models. This is the first broad insight into the evolution of GUX gene family in plants and will potentially guide genetic and functional studies in species used for biofuel production.In this study, novel silicon(iv) phthalocyanines axially disubstituted with bis[(4-3-[3-(dimethylamino)phenoxy]propoxyphenyl)methoxy] and bis[(4-3-[3-(diethylamino)phenoxy]propoxyphenyl)methoxy] groups and their quaternized derivatives were synthesized and characterized. Then, their supercoiled pBR322 plasmid DNA cleavage properties were investigated using agarose gel electrophoresis. The in vitro PDT effects of Si-3a and Si-4a were investigated using the MTT cell viability assay against HCT-116, A549 and SH-SY5Y cell lines. Si-3a and Si-4a did not show cleavage effects upon increasing concentrations in the dark but both compounds showed cleavage activities upon irradiation for 30 and 60 min, respectively. The MTT cell viability assay indicated that Si-4a had a cytotoxic effect in a concentration-dependent manner on the HCT-116 cell line but it did not show any statistical difference with regard to phototoxicity. Otherwise, Si-3a and Si-4a had significant phototoxic effects when compared to cytotoxic effects against A549 and SH-SY5Y. The results suggested that Si-3a and Si-4a showed better cell death against SH-SY5Y than other cell lines with irradiation.Manganese peroxidase (MnP) from Irpex lacteus F17 has potential use as a biocatalyst in the field of environmental biotechnology because of its unique properties and ability to decompose harmful aromatic compounds. However, its requirement of harsh acidic reaction conditions and its insufficient catalytic activity restrict its practical applications. Here, we combine graphene oxide (GO) and MnP to construct an efficient enzyme system (GO-MnP) with improved catalytic efficiencies and a wide pH range for the oxidation of aromatic substances and dye decolorization. We found that the Michaelis constant (Km) of GO-MnP for Mn2+ was 2.8 times lower and the catalytic efficiency (kcat/Km) of GO-MnP was 4.5 times higher than those of MnP, and that the decolorization of various dyes by GO-MnP was significantly improved over the pH range of 4.5-5.5. A comparison of the midpoint redox potentials also reflects the strong oxidation ability of GO-MnP. Furthermore, we demonstrated that, in the GO-MnP system, the MnP activity is mainly determined by the amounts of epoxy and carboxyl groups in GO, based on an analysis of the functional group changes in GO and reduced GO associated with different reduction degrees as shown by X-ray photoelectron spectroscopy.The reaction between [NnBu4][(C6F5)2PtII(μ-PPh2)2PtIV(C^N)(I)2] (C^N = κ2-N,C-benzoquinolinate, 1) and (i) bidentate S^S, N^S and O^O anionic ligands or (ii) monodentate S- N- or O-based anionic ligands was studied in order to investigate the factors that may guarantee the stability of Pt(ii),Pt(iv) mixed-valence dinuclear phosphanido complexes. While reactions of 1 with S^S or N^S ligands afforded stable Pt(ii),Pt(iv) species of general formula [(C6F5)2PtII(μ-PPh2)2PtIV(C^N)(L^S)]x- [(L^S)(x-1) = 2-mercaptopyrimidinate (pymS-), 2-mercaptopyridinate (pyS-), dimethyldithiocarbamate (Me2NCS2-), ethyl xanthogenate (EtOCS2-) and 1,2-benzenedithiolate (PhS22-)], the reaction of 1 with the O^O ligand sodium acetylacetonate gave several products, and no pure Pt(ii),Pt(iv) complex could be isolated. The reaction of monodentate ligands such as PhS-, OH- or N3- with 1 led to a stable Pt(ii),Pt(iv) complex only in the case of N3-. The reaction with OH- afforded the Pt(ii),Pt(ii) complex [(C6F5)2PtII(μ-PPh2)(κ2-O,P-μ-O-PPh2)PtII(C^N)]- (8) deriving from reductive coupling of a diphenylphosphanide and an O-donor ligand coordinated to the Pt(iv) centre, while the reaction with PhS- produced the unstable Pt(ii),Pt(iv) complex [NnBu4][(C6F5)2PtII(μ-PPh2)2PtIV(C^N)(PhS)2] (11) that evolved in solution to the Pt(ii),Pt(ii) species [NnBu4][(C6F5)2PtII(μ-PPh2)2PtII(C^N)] (9) by elimination of diphenyldisulfide.

Autoři článku: Holmeskrabbe5306 (Sullivan Glud)