Hollowaytyler2297
The extracted EPSs of both bacterial strains can be used as natural, effective, efficient and anti-cancer drugs. However, more characterization at molecular and structural levels in this respect may be required. In this work, cellulose nanofibres (CNFs) were extracted from sawdust, which is an underutilized by-product from the wood and timber industry. The extracted CNFs by chemical and mechanical treatments had a web-like structure with diameters ranging between 2 nm and 27 nm and lengths reaching a few microns. The obtained CNFs were further chemically modified with vegetable canola oil using two different esterification processes. In order to compare the effect of the surface modification of CNFs, the nanopapers were prepared from their prospective suspensions through solvent evaporation method, and then characterize with Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis spectroscopy and tensile tester. FTIR results indicated that both methods led to a successful grafting of the long chain hydrocarbon structure onto the CNFs, and became more hydrophobic when compared to unmodified CNFs-based nanopapers. The crystallinity, mechanical, light transmittance and thermal properties were significantly affected primarily by the esterification method employed, thus the degree of substitution. It was found that high degree of substitution adversely affected the crystallinity, light transmittance, mechanical and thermal properties. The crystallinity decreased from 70% to less then 40% when the degree of substation was about 0.8. Hydroxyethylcellulose (HEC) is a biocompatible, biodegradable, nontoxic, hydrophilic, non- ionic water soluble derivative of cellulose. It is broadly used in biomedical field, paint industry, as a soil amendment in agriculture, coal dewatering, cosmetics, absorbent pads, wastewater treatment and gel electrolyte membranes. Industrial uses of HEC can be extended by the its grafting with different polymers including poly acrylic acid, polyacrylamide, polylactic acid, polyethyleneglycol, polydimethyleamide, polycaprolactone, polylactic acid and dimethylamino ethylmethacrylate. This permits the formation of new biomaterials with improved properties and versatile applications. In this article, a comprehensive overview of graft copolymers of HEC with other polymers/compounds and their applications in drug delivery, stimuli sensitive hydrogels, super absorbents, personal hygiene products and coal dewatering is presented. This research displayed the structures and thermomechanical feature of starch-based nanocomposites as induced by interaction between propionylated amylose/amylopectin and nanofiller (organically modified montmorillonite). Propionylated amylose incorporated with nanofiller caused some phase separation within the nanocomposites. By contrast, highly-branched propionylated amylopectin favored nanofiller dispersion and disrupted its crystalline structure, and further facilitated certain exfoliated or intercalated structures. Based on these structures, propionylated amylose-rich nanocomposites showed enhanced β-relaxation in the induced "plasticizer-rich" regions, whereas the propionylated amylopectin nanocomposites displayed higher glass-transition temperature due to restricted macromolecular mobility. These results suggested that the structures and further packaging properties of starch-based nanocomposites could be better understood by controlling the interaction of starch with other ingredients. Polysaccharide (HFSGF) was purified from Sargassum fusiforme. Autohydrolysis and gel column chromatography were performed to fractionate HFSGF into three components (HFSGF-S, HFSGF-L and HFSGF-H). Compositional analysis, mass spectrometry and nuclear magnetic resonance spectroscopy were used to elucidate the structural features of HFSGF. HFSGF-S was a mixture of sulfated galacto-fuco-oligomers, from the branches terminal ends; in HFSGF-L, the branches of HFSGF, was a sulfated galactofucan, containing a backbone of 1,3-linked α-L-fucan sulfated at C2/4 and/or C4 and interspersed with galactose (Gal); and in HFSGF-H, the backbone of HFSGF, was composed of alternating 1,2-linked α-D-mannose (Man) and 1,4-linked β-D-glucuronic acid (GlcA), branched with sulfated galactofucan or sulfated fucan, 1,3-linked α-L-fucan sulfated at C2/4 and/or C4 and partly interspersed with Gal. Some fucose (Fuc) residues were also partially branched with xylose (Xyl). Dac51 The anti-lung cancer activities of HFSGF-L and HFSGF-H against human lung cancer A549 cells in vitro and A549 xenograft tumor growth in vivo were determined. HFSGF-H had higher activity in vitro (IC50 ~12 mg/mL for 24 h) and in vivo (tumor inhibition ~51%.) than HFSGF-L, indicating that HFSGF-H might be a leading compound for a potential new therapeutics for the treatment of lung cancer. According to different sources, structures, digestive properties and applications, resistant starch (RS) can be divided into five categories. The Influencing factors of RS mainly include intrinsic properties and external factors. The intrinsic properties include crystal type, granular structure, and the ratio of amylose and amylopectin. The external factors include chemical constituents and processing conditions. The characteristics of RS and its physiological effects on the human body could affect cereal food products to make functional foods with different application. In this paper, five kinds of RS classification, important physiological effects and related application in cereal production are analyzed and summarized. When added to dough, bread, noodle, steamed bread, RS could affect the nutritional value and texture characteristics of food. Sciaridae is a family of great species diversity, distributed worldwide, that includes important agricultural pests of cultivated mushrooms and plants produced in greenhouses. Here we sequenced five nearly complete mitochondrial genomes representing three subfamilies of Sciaridae. The lengths of these mitogenomes range from 13,849 bp to 16,923 bp with 13 protein-coding genes (PCGs), 20-22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region (CR). Compared with other dipteran species, rearrangements in Sciaridae are more common. Inversion or transition is observed frequently of trnL2, and in the tRNA clusters trnI-trnQ-trnM, trnW-trnC-trnY, and trnA-trnR-trnN-trnS1-trnE-trnF. Phylogenetic relationships within the family were reconstructed based on these newly sequenced species, combined with the published mitogenomes of related families, and recovered the topology within Sciaroidea as Cecidomyiidae + (Sciaridae + Keroplatidae). Relationships recovered within Sciaridae were Sciarinae + ('Pseudolycoriella group' + Megalosphyinae).