Hollisnygaard8509

Z Iurium Wiki

rategy showed excellent performance in all workflow tests in preparation of the clinical introduction on the Unity MR-linac.Objective. This study aimed to explore an online, real-time, and precise method to assess steady-state visual evoked potential (SSVEP)-based visual acuity more rapidly and objectively with self-adaptive spatial frequency steps.Approach. Taking the vertical sinusoidal reversal gratings with different spatial frequencies and temporal frequencies as the visual stimuli, according to the psychometric function for visual acuity assessment, a self-adaptive procedure, the best parameter estimation by sequential testing algorithm, was used to calculate the spatial frequency sequence based on all the previous spatial frequencies and their significance of the SSVEP response. Simultaneously, the canonical correlation analysis (CCA) method with a signal-to-noise ratio (SNR) significance detection criterion was used to judge the significance of the SSVEP response.Main results.After 18 iterative trails, the spatial frequency to be presented converged to a value, which was exactly defined as the SSVEP visual acuity threshold. Our results indicated that this SSVEP acuity had a good agreement and correlation with subjective Freiburg Visual Acuity and Contrast Test acuity, and the test-retest repeatability was also good.Significance. The self-adaptive step SSVEP procedure combined with the CCA method and SNR significance detection criterion appears to be an alternative method in the real-time SSVEP acuity test to obtain objective visual acuity more rapidly and precisely.In the context of reducing the patient dose coming from CT scanner examinations without penalizing the diagnosis, the assessment of both patient dose and image quality (IQ) with relevant metrics is crucial. The present study represents the first stage in a larger work, aiming to compare and optimize CT protocols using dose and IQ new metrics. We proposed here to evaluate the capacity of the Non-PreWhitening matched filter with an eye (NPWE) model observer to be a robust and accurate estimation of IQ. We focused our work on two types of clinical tasks a low contrast detection task and a discrimination task. We designed a torso-shaped phantom, including Plastic Water®slabs with cylindrical inserts of different diameters, sections and compositions. We led a human observer study with 13 human observers on images acquired in multiple irradiation and reconstruction scanning conditions (voltage, pitch, slice thickness, noise level of the reconstruction algorithm, energy level in dual-energy mode and dose), to evaluate the behavior of the model observer compared to the human responses faced to changing conditions. The model observer presented the same trends as the human observers with generally better results. We rescaled the NPWE model on the human responses by scanning conditions (kVp, pitch, slice thickness) to obtain the best agreement between both observer types, estimated using the Bland-Altman method. The impact of some scanning parameters was estimated using the correct answer rate given by the rescaled NPWE model, for both tasks and each insert size. In particular, the comparison between the dual-energy mode at 74 keV and the single-energy mode at 120 kVp showed that, if the 120 kVp voltage provided better results for the smallest insert at the lower doses for both tasks, their responses were equivalent in many cases.ITO/NiO/ZnO npn heterojunction bipolar phototransistors (HBPTs) with various base widths are fabricated using a radio-frequency sputtering system. The effects of base-width modulation on the optoelectronic characteristics of the prepared HBPTs are studied. The dark current of HBPTs decreases with increasing base width because the injected electrons from the emitter are recombined in the wide base region. The photocurrent increases with decreasing base width, which is attributed to higher emitter-base injection efficiency. The responsivity increases with the collector-emitter voltage (VCE) in the HBPTs with a 100 nm base width, whereas the responsivity sharply decreases at VCE > 4 V for the HBPTs with a thinner base width (80 nm) due to the punch-through effect. In contrast, the responsivity approaches saturation at large VCE for HBPTs with a thicker base width (120 nm). The responsivity and detectivity decrease with increasing incident light intensity, which is caused by an increase in the base recombination loss. The HBPTs with a base width of 100 nm exhibits the largest responsivity and detectivity; their detectivity is higher than that of HBPTs with base widths of 80 and 120 nm by approximately two and three orders, respectively.Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. GSK-3 beta phosphorylation We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.

Autoři článku: Hollisnygaard8509 (Vazquez Klint)