Hollischurch7013

Z Iurium Wiki

The goal of the present work is to obtain accurate potential energy surfaces (PESs) for high-dimensional molecular systems with a small number of ab initio calculations in a system-agnostic way. We use probabilistic modeling based on Gaussian processes (GPs). We illustrate that it is possible to build an accurate GP model of a 51-dimensional PES based on 5000 randomly distributed ab initio calculations with a global accuracy of 20 000 cm-1). This opens the prospect for new applications of GPs, such as mapping out phase transitions by extrapolation or accelerating Bayesian optimization, for high-dimensional physics and chemistry problems with a restricted number of inputs, i.e., for high-dimensional problems where obtaining training data is very difficult.We propose a "backtracking" mechanism within Tully's fewest switches surface hopping (FSSH) algorithm, whereby whenever one detects consecutive (double) hops during a short period of time, one simply rewinds the dynamics backward in time. In doing so, one reduces the number of hopping events and comes closer to a truly fewest switches surface hopping approach with independent trajectories. With this algorithmic change, we demonstrate that surface hopping can be reasonably accurate for nuclear dynamics in a multidimensional configuration space with a complex-valued (i.e., not real-valued) electronic Hamiltonian; without this adjustment, surface hopping often fails. The added computational cost is marginal. Future research will be needed to assess whether or not this backtracking correction can improve the accuracy of a typical FSSH calculation with a real-valued electronic Hamiltonian (that ignores spin).Photon upconversion based on sensitized triplet-triplet annihilation in bi-component systems is a multistep process that involves a triplet-triplet energy transfer (ET) from a donor to an acceptor moiety. This is aimed at sensitizing the population of annihilating optically dark triplets that generates the high energy photoluminescence. A large resonance between the involved triplets is usually recommended because it increases the energy gain between absorbed and emitted upconverted photons. However, it also enables efficient back-ET from acceptor to donor triplets, with potential detrimental consequences on the system performance. Here, we analyze a model system, where the energy difference between donor and acceptor triplets is lower than kBT at room temperature by means of time resolved and steady state photoluminescence spectroscopy, and develop a kinetic model, which describes the iterative loop that transfers the triplet exciton between the donor and acceptor molecules. In such a way, we obtained the guidelines for the optimization of the system composition required to overcome the back-ET effect and maximize the upconversion quantum yield.The monoprotonated compound N,N',N-tris(p-tolyl)azacalix[3](2,6)pyridine (TAPH) contains an intramolecular hydrogen bond that is formed from three N atoms in its cavity. CK-666 clinical trial Constrained by the macrocyclic molecular structure, the separations between the N atoms in this bifurcated hydrogen bond are about 2.6 Å, considerably shorter than those typically observed for hydrogen bonded systems in the condensed phases. As such, TAPH exhibits significantly elongated N-H lengths in its hydrogen bond and a downfield 1H NMR chemical shift of 22.1 ppm. In this work, we carry out ab initio molecular dynamics and ab initio path integral molecular dynamics simulations of TAPH in the acetonitrile solution to reveal the geometry and proton sharing conditions of the bifurcated short hydrogen bond and uncover how the interplay of electronic and nuclear quantum effects gives rise to its far downfield 1H chemical shift. Taking a linear short hydrogen bond as a reference, we demonstrate the distinct features of competing quantum effects and electronic shielding effects in the bifurcated hydrogen bond of TAPH. We further use the degree of deshielding on the proton as a measure of the hydrogen bonding interactions and evaluate the strength of the bifurcated short hydrogen bond as compared to its linear counterpart.A comprehensive description of the spin dynamics underlying the formation of Ortho-Deuterium Induced Polarization (ODIP) is presented. ODIP can serve as a tool for enhancing Nuclear Magnetic Resonance (NMR) signals of 2H nuclei, being important probes of molecular structure and dynamics. To produce ODIP, in the first step, the D2 gas is brought to thermal equilibrium at low temperature, here 30 K, so that the ortho-component, corresponding to the total spin of the 2H nuclei equal to 0 and 2, is enriched, here to 92%. In the second step, the orthodeuterium molecule is attached to a substrate molecule using a suitable hydrogenation catalyst such that the symmetry of the two 2H nuclei is broken. As a result, the non-thermal spin order of orthodeuterium is converted into enhancement of observable NMR signals. In this work, we perform a theoretical study of ODIP and calculate the shape of ODIP spectra and their dependence on the magnetization flip angle. These results are compared with experiments performed for a number of substrates; good agreement between experimental and calculated ODIP spectra is found. We also discuss the performance of NMR techniques for converting anti-phase ODIP spectral patterns into in-phase patterns, which are more suitable for signal detection and for transferring ODIP to heteronuclei, here to 13C spins. Experimental procedures reported here allowed us to reach signal enhancement factors of more than 1000 for 2H nuclei in the liquid phase. These results are useful for extending the scope of spin hyperpolarization to the widely used 2H nuclei.Plasmon-tunable tip pyramids (PTTPs) are reproducible and efficient nanoantennas for tip-enhanced Raman spectroscopy (TERS). Their fabrication method is based on template stripping of a segmented gold pyramid with a size-adjustable nanopyramid end, which is capable of supporting monopole localized surface plasmon resonance (LSPR) modes leading to high spectral enhancement when its resonance energy is matched with the excitation laser energy. Here, we describe in detail the PTTP fabrication method and report a statistical analysis based on 530 PTTPs' and 185 ordinary gold micropyramids' templates. Our results indicate that the PTTP method generates probes with an apex diameter smaller than 30 nm on 92.4% of the batch, which is a parameter directly related to the achievable TERS spatial resolution. Moreover, the PTTPs' nanopyramid edge size L, a critical parameter for LSPR spectral tuning, shows variability typically smaller than 12.5%. The PTTP's performance was tested in TERS experiments performed on graphene, and the results show a spectral enhancement of up to 72-fold, which is at least one order of magnitude higher than that typically achieved with gold micropyramids.

Autoři článku: Hollischurch7013 (Herman Mosegaard)