Hollandkrause7508
Emerging technologies support a new era of applied wildlife research, generating data on scales from individuals to populations. Computer vision methods can process large datasets generated through image-based techniques by automating the detection and identification of species and individuals. With the exception of primates, however, there are no objective visual methods of individual identification for species that lack unique and consistent body markings. We apply deep learning approaches of facial recognition using object detection, landmark detection, a similarity comparison network, and an support vector machine-based classifier to identify individuals in a representative species, the brown bear Ursus arctos. Our open-source application, BearID, detects a bear's face in an image, rotates and extracts the face, creates an "embedding" for the face, and uses the embedding to classify the individual. We trained and tested the application using labeled images of 132 known individuals collected from British C and evaluating the intrapopulation variation in efficacy of conservation strategies, such as wildlife crossings.Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low-to-medium genetic diversity parameters were found. Both populations showed low-albeit significant-values of system of mating inbree situ one, which is crucial for considering a reintroduction process into the island.Scavengers can have strong impacts on food webs, and awareness of their role in ecosystems has increased during the last decades. In our study, we used baited camera traps to quantify the structure of the winter scavenger community in central Scandinavia across a forest-alpine continuum and assess how climatic conditions affected spatial patterns of species occurrences at baits. Canonical correspondence analysis revealed that the main habitat type (forest or alpine tundra) and snow depth was main determinants of the community structure. According to a joint species distribution model within the HMSC framework, species richness tended to be higher in forest than in alpine tundra habitat, but was only weakly associated with temperature and snow depth. However, we observed stronger and more diverse impacts of these covariates on individual species. Occurrence at baits by habitat generalists (red fox, golden eagle, and common raven) typically increased at low temperatures and high snow depth, probably due to increased energetic demands and lower abundance of natural prey in harsh winter conditions. On the contrary, occurrence at baits by forest specialists (e.g., Eurasian jay) tended to decrease in deep snow, which is possibly a consequence of reduced bait detectability and accessibility. In general, the influence of environmental covariates on species richness and occurrence at baits was lower in alpine tundra than in forests, and habitat generalists dominated the scavenger communities in both forest and alpine tundra. Following forecasted climate change, altered environmental conditions are likely to cause range expansion of boreal species and range contraction of typical alpine species such as the arctic fox. Our results suggest that altered snow conditions will possibly be a main driver of changes in species community structure.The climate is warming at an unprecedented rate, pushing many species toward and beyond the upper temperatures at which they can survive. Global change is also leading to dramatic shifts in the distribution of pathogens. As a result, upper thermal limits and susceptibility to infection should be key determinants of whether populations continue to persist, or instead go extinct. Within a population, however, individuals vary in both their resistance to both heat stress and infection, and their contributions to vital growth rates. No more so is this true than for males and females. Each sex often varies in their response to pathogen exposure, thermal tolerances, and particularly their influence on population growth, owing to the higher parental investment that females typically make in their offspring. To date, the interplay between host sex, infection, and upper thermal limits has been neglected. Here, we explore the response of male and female Daphnia to bacterial infection and static heat stress. We find that female Daphnia, when uninfected, are much more resistant to static heat stress than males, but that infection negates any advantage that females are afforded. We discuss how the capacity of a population to cope with multiple stressors may be underestimated unless both sexes are considered simultaneously.Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non-native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non-native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non-native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non-native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non-natives. Native plants hosted more specialized plant-bee visitation networks than non-native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non-native plants. Fluorescein-5-isothiocyanate Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non-native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee-plant network structures.The Omei wood frog (Rana omeimontis), endemic to central China, belongs to the family Ranidae. In this study, we achieved detail knowledge about the mitogenome of the species. link2 The length of the genome is 20,120 bp, including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a noncoding control region. Similar to other amphibians, we found that only nine genes (ND6 and eight tRNA genes) are encoded on the light strand (L) and other genes on the heavy strand (H). Totally, The base composition of the mitochondrial genome included 27.29% A, 28.85% T, 28.87% C, and 15.00% G, respectively. The control regions among the Rana species were found to exhibit rich genetic variability and A + T content. R. omeimontis was clustered together with R. chaochiaoensis in phylogenetic tree. Compared to R. amurensis and R. kunyuensi, it was more closely related to R. chaochiaoensis, and a new way of gene rearrangement (ND6-trnE-Cytb-D-loop-trnL2 (CUN)-ND5-D-loop) was also found in the mitogenome of R. amurensis and R. kunyuensi. Our results about the mitochondrial genome of R. omeimontis will contribute to the future studies on phylogenetic relationship and the taxonomic status of Rana and related Ranidae species.Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species-level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe's evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.The absence of some species from small habitat patches has long posed a challenge for conservationists, yet the underlying mechanisms that cause this "area-sensitivity" remain poorly understood. Capacity of a species to extend their activities into the surrounding matrix habitat represents one potential determinant of area-sensitivity. Species may be able to occupy smaller patches if they can utilize matrix habitat beyond patch boundaries, whereas area-sensitive species may be restricted to larger patches due to their inability to utilize the surrounding matrix. We investigated the potential role of matrix utilization in determining area-sensitivity by mapping the movements of two shrubland-obligate passerines with contrasting patch area requirements in shrub-dominated forest openings ranging in area by nearly an order of magnitude. Our findings were consistent with our predictions; the less area-sensitive chestnut-sided warbler (Setophaga pensylvanica) exhibited greater use of matrix habitat than the highly area-sensitive prairie warbler (S. link3 discolor). Furthermore, chestnut-sided warblers that occupied smaller openings used mature forest more than conspecifics in larger patches, yet forest use by prairie warblers was unrelated to opening size. Chestnut-sided warblers foraged as frequently in mature forest as within shrubland, whereas prairie warblers foraged significantly more in openings compared to forest. The findings of this study suggest that the ability or inclination of a species to utilize surrounding matrix habitat explains at least some of the observed variation in area-sensitivity in songbirds and potentially other taxa.