Hollandballing8798

Z Iurium Wiki

Cancer immunotherapy represents a novel anticancer strategy that acts directly on the immune system, promoting its activation toward cancer cells to enhance its natural ability to fight cancer. Among various treatments currently used or investigated, chimeric antigen receptors (CAR) T-cell therapy and immune checkpoint inhibitors (ICIs) have consistently proven their efficacy. These innovations are progressively improving the standard of care in cancer treatment, yet they are hampered by novel neurological adverse events, attributing to neurologists a key role in the multidisciplinary oncological team. Indeed, neurotoxicity may develop in up to 77% of patients who received CAR T-cell therapy and usually presents with encephalopathy characterized by a predominant frontal lobe dysfunction. This neurotoxicity is related to cytokine release syndrome, a systemic hyperinflammatory condition triggered by CAR T-cells. On the other hand, following treatment with ICIs, unrestrained T-cells may lead to central and peripheral neurological disorders by antigen-directed autoimmunity. Notably, biological and clinical similarities have been underlined between neurotoxicity related to CAR T-cell therapy and neurological manifestations of cytokine storms (e.g. COVID-19-related encephalopathy), as well as between a subgroup of ICI-related neurological adverse events and paraneoplastic neurological syndromes. Therefore, these cancer immunotherapy-related neurological syndromes may provide an unprecedented, perhaps transitory, opportunity to shed light on the underlying pathogenic mechanisms of a wide spectrum of neurological syndromes and to push forward our knowledge in neuroimmunology.The objective of the study was to characterize the pattern of cognitive dysfunction in patients with multiple system atrophy (MSA) applying a standardized neuropsychological assessment. A total of 20 patients with the diagnosis of probable or possible MSA were enrolled for neuropsychological assessment applying the CERAD plus battery. All patients were tested at baseline and 14/20 patients received additional follow-up assessments (median follow-up of 24 months). Additionally, relationship between cortical thickness values/subcortical gray matter volumes and CERAD subitems was evaluated at baseline in a subgroup of 13/20 patients. Trail Making Test (TMT) was the most sensitive CERAD item at baseline with abnormal performance (z-score less then -1.28) in one or both pathological TMT items (TMT-A, TMT-B) in 60% of patients with MSA. Additionally, there was a significant inverse correlation between the volume of the left and the right accumbens area and the TMT A item after adjusting for age (left side p = 0.0009; right side p = 0.003). Comparing both subtypes, patients with MSA-C had significant lower values in phonemic verbal fluency (p = 0.04) and a trend for lower values in semantic verbal fluency (p = 0.06) compared to MSA-P. Additionally, patients with MSA-C showed significantly worse performance in the TMT-B task (p = 0.04) and a trend for worse performance in the TMT-A task (p = 0.06). Concerning longitudinal follow-up, a significant worsening in the TMT-B (p = 0.03) can be reported in MSA. In conclusion, frontal-executive dysfunction presents the hallmark of cognitive impairment in MSA.

In the field of upper limb neurorehabilitation, the translation from research findings to clinical practice remains troublesome. Patients are not receiving treatments based on the best available evidence. There are certainly multiple reasons to account for this issue, including the power of habit over innovation, subjective beliefs over objective results. We need to take a step forward, by looking at most important results from randomized controlled trials, and then identify key active ingredients that determined the success of interventions. Androgen Receptor Antagonist solubility dmso On the other hand, we need to recognize those specific categories of patients having the greatest benefit from each intervention, and why. The aim is to reach the ability to design a neurorehabilitation program based on motor learning principles with established clinical efficacy and tailored for specific patient's needs.

The objective of the present manuscript is to facilitate the translation of research findings to clinical practice. Starting from a literature revinuscript will serve as starting point to fill the gap between theory and practice in upper limb neurorehabilitation, and as a practical tool to leverage the positive impact of clinicians on patients' recovery.

To investigate the plasma proteomic profiling in identifying biomarkers related to return to sport (RTS) following a sport-related concussion (SRC).

This multicenter, prospective, case-control study was part of a larger cohort study conducted by the NCAA-DoD Concussion Assessment, Research, and Education (CARE) Consortium, athletes (

= 140) with blood collected within 48 h of injury and reported day to asymptomatic were included in this study, divided into two groups (1) recovery <14-days (

= 99) and (2) recovery ≥14-days (

= 41). We applied a highly multiplexed proteomic technique that uses DNA aptamers assay to target 1,305 proteins in plasma samples from concussed athletes with <14-days and ≥14-days.

We identified 87 plasma proteins significantly dysregulated (32 upregulated and 55 downregulated) in concussed athletes with recovery ≥14-days relative to recovery <14-days groups. The significantly dysregulated proteins were uploaded to Ingenuity Pathway Analysis (IPA) software for analysis. Pathway analysis showed that significantly dysregulated proteins were associated with STAT3 pathway, regulation of the epithelial mesenchymal transition by growth factors pathway, and acute phase response signaling.

Our data showed the feasibility of large-scale plasma proteomic profiling in concussed athletes with a <14-days and ≥ 14-days recovery. These findings provide a possible understanding of the pathophysiological mechanism in neurobiological recovery. Further study is required to determine whether these proteins can aid clinicians in RTS decisions.

Our data showed the feasibility of large-scale plasma proteomic profiling in concussed athletes with a less then 14-days and ≥ 14-days recovery. These findings provide a possible understanding of the pathophysiological mechanism in neurobiological recovery. Further study is required to determine whether these proteins can aid clinicians in RTS decisions.

It is well-known that, in Parkinson's disease (PD), executive function (EF) and motor deficits lead to reduced walking performance. As previous studies investigated mainly patients during the compensated phases of the disease, the aim of this study was to investigate the above associations in acutely hospitalized patients with PD.

A total of seventy-four acutely hospitalized patients with PD were assessed with the delta Trail Making Test (ΔTMT, TMT-B minus TMT-A) and the Movement Disorder Society-revised version of the motor part of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS III). Walking performance was assessed with wearable sensors under single (ST; fast and normal pace) and dual-task (DT; walking and checking boxes as the motor secondary task and walking and subtracting seven consecutively from a given three-digit number as the cognitive secondary task) conditions over 20 m. Multiple linear regression and Bayes factor BF

were performed for each walking parameter and their dual-task costtion, especially step time variability, a parameter associated with the risk of falling in PD worsens.

The results of this study suggest that, in acutely hospitalized patients with PD, reduced walking performance is mainly explained by the use of a walking aid, motor symptoms, age, and gender, and EF deficits surprisingly do not seem to play a significant role. However, these patients with PD should avoid walking-cognitive DT situations, as under this condition, especially step time variability, a parameter associated with the risk of falling in PD worsens.

Time perception comprises the subjective experience of passing of time and of the duration of an event. Although already described in some neurological and psychiatric conditions, there is a paucity of details regarding this neurocognitive change in stroke patients. We aimed to describe time perception dysfunction in stroke patient.

We performed a systematic review of the literature in Pubmed, PsycInfo and EMBASE including manuscripts from their inception until December 2020. We collected data regarding the type of time perception that was detected, type of stroke, most common location of lesions, evaluation tests that were used and time of evaluation after stroke onset.

A total of 27 manuscripts were selected, concerning a total of 418 patients (

= 253 male; 60.5%). Most manuscripts (

= 21) evaluated patients with ischaemic lesions (

= 407; 97.4%). The majority referred to evaluations between 2 months and seven years after stroke. Underestimation in temporal evaluation in sub- and supra-second waception deficits after stroke. Most studies rely in psychometric analysis without clear clinical and functional translation, namely regarding impact on daily activities.

Unruptured intracranial aneurysms (UIAs) are increasingly being detected in clinical practice. Artificial intelligence (AI) has been increasingly used to assist diagnostic techniques and shows encouraging prospects. In this study, we reported the protocol and preliminary results of the establishment of an intracranial aneurysm database for AI application based on computed tomography angiography (CTA) images.

Through a review of picture archiving and communication systems, we collected CTA images of patients with aneurysms between January 2010 and March 2021. The radiologists performed manual segmentation of all diagnosed aneurysms on subtraction CTA as the basis for automatic aneurysm segmentation. Then, AI will be applied to two stages of aneurysm treatment, namely, automatic aneurysm detection and segmentation model based on the CTA image and the aneurysm risk prediction model.

Three medical centers have been included in this study so far. A total of 3,190 cases of CTA examinations with 4,124 aneurysm results of the establishment of the intracranial aneurysm database for AI applications based on CTA images. The establishment of a multicenter database based on CTA images of intracranial aneurysms is the basis for the application of AI in the diagnosis and treatment of aneurysms. In addition to segmentation, AI should have great potential for aneurysm treatment and management in the future.

Recovery of walking post-stroke is highly variable. Accurately measuring and documenting functional brain activation characteristics during walking can help guide rehabilitation. Previous work in this area has been limited to investigations of frontal brain regions and have not utilized recent technological and analytical advances for more accurate measurements. There were three aims for this study to characterize the hemodynamic profile during walking post-stroke, to investigate regional changes in brain activation during different phases of walking, and to related brain changes to clinical measures.

Functional near-infrared spectroscopy (fNIRS) along the pre-frontal, premotor, sensorimotor, and posterior parietal cortices was used on twenty individuals greater than six months post-stroke. Individual fNIRS optodes were digitized and used to estimate channel locations on each participant and short separation channels were used to control for extracerebral hemodynamic changes. Participants walked at their comfortable pace several times along a hallway while brain activation was recorded.

Autoři článku: Hollandballing8798 (Terkildsen Honore)