Hoffmannielsen1058

Z Iurium Wiki

Nanocarbon materials represent one of the hottest topics in physics, chemistry, and materials science. Preparation of nanocarbon materials by zeolite templates has been developing for more than 20 years. In recent years, novel structures and properties of zeolite-templated nanocarbons have been evolving and new applications are emerging in the realm of energy storage and conversion. Here, recent progress of zeolite-templated nanocarbons in advanced synthetic techniques, emerging properties, and novel applications is summarized i) thanks to the diversity of zeolites, the structures of the corresponding nanocarbons are multitudinous; ii) by various synthetic techniques, novel properties of zeolite-templated nanocarbons can be achieved, such as hierarchical porosity, heteroatom doping, and nanoparticle loading capacity; iii) the applications of zeolite-templated nanocarbons are also evolving from traditional gas/vapor adsorption to advanced energy storage techniques including Li-ion batteries, Li-S batteries, fuel cells, metal-O2 batteries, etc. Finally, a perspective is provided to forecast the future development of zeolite-templated nanocarbon materials.Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human-made three-dimensional (3D) architected materials using beam-and-junction-based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented. In situ tension and compression experiments of additively manufactured woven and monolithic lattices with 30 µm unit cells demonstrate the superior ability of woven architectures to achieve high tensile and compressive strains (>50%)-without failure events-via smooth reconfiguration of woven microfibers in the effective beams and junctions. Cyclic compression experiments reveal that woven lattices accrue less damage compared to lattices with monolithic beams. Numerical studies of woven beams with varying geometric parameters present new design spaces to develop architected materials with tailored compliance that is unachievable by similarly configured monolithic-beam architectures. Woven hierarchical design offers a pathway to make traditionally stiff and brittle materials more deformable and introduces a new building block for 3D architected materials with complex nonlinear mechanics.Simultaneous on-chip sensing of multiple greenhouse gases in a complex gas environment is highly desirable in industry, agriculture, and meteorology, but remains challenging due to their ultralow concentrations and mutual interference. Porous microstructure and extremely high surface areas in metal-organic frameworks (MOFs) provide both excellent adsorption selectivity and high gases affinity for multigas sensing. Herein, it is described that integrating MOFs into a multiresonant surface-enhanced infrared absorption (SEIRA) platform can overcome the shortcomings of poor selectivity in multigas sensing and enable simultaneous on-chip sensing of greenhouse gases with ultralow concentrations. The strategy leverages the near-field intensity enhancement (over 1500-fold) of multiresonant SEIRA technique and the outstanding gas selectivity and affinity of MOFs. It is experimentally demonstrated that the MOF-SEIRA platform achieves simultaneous on-chip sensing of CO2 and CH4 with fast response time ( less then 60 s), high accuracy (CO2 1.1%, CH4 0.4%), small footprint (100 × 100 µm2), and excellent linearity in wide concentration range (0-2.5 × 104 ppm). Additionally, the excellent scalability to detect more gases is explored. This work opens up exciting possibilities for the implementation of all-in-one, real-time, and on-chip multigas detection as well as provides a valuable toolkit for greenhouse gas sensing applications.Nonradiative surface plasmon decay produces highly energetic electron-hole pairs with desirable characteristics, but the measurement and harvesting of nonequilibrium hot holes remain challenging due to ultrashort lifetime and diffusion length. Here, the direct observation of LSPR-driven hot holes created in a Au nanoprism/p-GaN platform using photoconductive atomic force microscopy (pc-AFM) is demonstrated. Significant enhancement of photocurrent in the plasmonic platforms under light irradiation is revealed, providing direct evidence of plasmonic hot hole generation. Experimental and numerical analysis verify that a confined |E|-field surrounding a single Au nanoprism spurs resonant coupling between localized surface plasmon resonance (LSPR) and surface charges, thus boosting hot hole generation. Furthermore, geometrical and size dependence on the extraction of LSPR-driven hot holes suggests an optimized pathway for their efficient utilization. The direct visualization of hot hole flow at the nanoscale provides significant opportunities for harnessing the underlying nature and potential of plasmonic hot holes.Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Resveratrol mouse Here, two-level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro-nano hierarchical pillars in turn trigger three-level liquid adjusting phenomena, including two-level liquid self-splitting and liquid self-sucking effects. Under these effects, uniform nanometer-thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single-level pillar surfaces and ≈3.

Autoři článku: Hoffmannielsen1058 (Walther Johnson)