Hofflara3688

Z Iurium Wiki

ethylation and histone methylation to regulate the expression of neuro-related genes. Cr exposure also influenced primary bile acid biosynthesis and phospholipid biosynthesis, which are associated with neuroprotective effects and need to be further validated.Heavy metal cadmium (Cd) pollution is a serious problem affecting the sustainable development of aquaculture and the safety of aquatic foods. Research about the use of probiotics to attenuate toxic damage caused by Cd2+ in aquatic animals has received widespread attention. Bacillus coagulans (B. coagulans), a kind of probiotics commonly used in aquaculture, has been shown to adsorb Cd2+ both in vivo and vitro. Here, we aimed to determine the effects of B. coagulans on Cd2+ bioaccumulation, gut barrier function, oxidative stress and gut microbiota in common carp following Cd2+ exposure. The fish were exposure to Cd2+ at 0 and 0.5 mg/L and/or fed a B. coagulans-containing diet at 107, 108 and 109 CFU/g for 8 weeks. The results indicated that B. coagulans can maintain gut barrier function in Cd2+-exposed fish by reducing Cd2+ bioaccumulation, increasing the mRNA levels of tight junction protein genes (occludin, claudin-2 and zonula occludens-1), and decreasing the levels of diamine oxidase and D-lactic acid. In addition, B. coagulans could relieve oxidative stress in Cd2+-exposed fish by restoring the activities of glutathione peroxidase, catalase and superoxide dismutase. Moreover, Cd2+ exposure decreased the intestinal microbiota diversity and changed the intestinal microbiota compositions in common carp. However, supplementation with B. coagulans could reverse the altered intestinal microbiota diversity and composition after Cd2+ exposure, decrease the abundance of some pathogens (Shewanella and Vibrio), and increase the abundance of probiotics (Bacillus and Lactobacillus). These results indicate that B. coagulans may serve as a potential antidote for alleviating Cd2+ toxicity.Many metals are involved in the pathogenesis of diabetes, but most of existing studies focused on single metals. The study of mixtures represents real-life exposure scenarios and deserves attention. This study aimed to explore the potential relationship of urinary copper (Cu), zinc (Zn), arsenic (As), selenium (Se), and strontium (Sr) contents with fasting plasma glucose (FPG) levels in 2766 participants. The levels of metals in urine were determined by inductively coupled plasma-mass spectrometry. We used linear regression models and the Bayesian kernel machine regression (BKMR) to evaluate the association between metals and FPG levels. In the multiple metals linear regression, Zn (β = 0.434), Se (β = 0.172), and Sr (β = -0.143) showed significant association with FPG levels (all P less then 0.05). The BKMR model analysis showed that the results of single metal association were consistent with the multiple metals linear regression. The mixture of five metals had a positive over-all effect on FPG levels, and Zn (PIP = 1.000) contributed the most to the FPG levels. Cu and As were negatively correlated with FPG levels in women. The potential interaction effect between Cu and Sr was observed in participants aged ≥ 60 years old (Pinteraction = 0.035). In summary, our results suggested that multiple metals in urine are associated with FPG levels. Further studies are needed to confirm these findings and clarify the underlying mechanisms.Benzene exposure leads to hematopoietic dysfunction and is characterized clinically by a decrease in blood cells, but the underlying mechanisms remain elusive. Disturbed gut microbiota may induce host metabolic, immune disorders and the onset of disease. However, the characterization of gut microbiota, metabolism, cytokines and their association with benzene-induced hematopoietic toxicity lacks systematic evidence. Here, the microbiomics, metabolomics and cytokine network were applied to find out the critical characteristics of gut microbiota, metabolism and cytokines in mice involved in the benzene-induced hematopoietic toxicity. We found that the decline in hematopoietic stem cells was earlier than the hematological changes in the 5 mg/kg and 25 mg/kg benzene exposure groups. While 125 mg/kg benzene exposure resulted in a significant decline in whole blood cells. High-throughput sequencing results showed that benzene exposure disrupted homeostasis of gut microbiota, metabolism and cytokine in mice. 6 bacteria, 12 plasma metabolites and 6 cytokines were associated with benzene-induced hematopoietic damage. Notably, IL-5 was significantly increased in benzene exposure group in a dose-dependent manner, and a significant negative correlation was found between IL-5 and hematopoietic damage. We further found that increased Family_XIII_AD3011_group at the genus level and decreased Anaerotruncus_sp at the species level in benzene-exposed group were strongly associated with hematopoietic toxicity and IL-5. Furthermore, the abundance of Family_XIII_AD3011_group and Anaerotruncus_sp were negatively correlated with Adipic acid and 4-Hydroxyproline, respectively. Our findings indicated that altered flora structure of gut microbiota affects the metabolic phenotype which acts as messengers for the gut microbes, affecting host inflammation. This preliminary study provides new insight into the potential mechanisms of benzene-induced hematopoietic toxicity, further exploration by functional studies is required in the future.Sources of cadmium (Cd) contamination of farmlands and the potential risk to human health via dietary intake of wheat Cd are of great concern to consumers. A source-specific risk assessment (SSRA) model, which combined a positive matrix factorization receptor model and spatial analysis with a health risk assessment model, was developed based on a wheat field investigation in northern China. It was used to estimate the daily intake risk from different sources of ingesting Cd from wheat. The mixed source of wastewater and residues from industrial activities and atmospheric deposition were identified as the dominant sources of Cd contamination. Wheat Cd uptake could be predicted reliably from the pH and total Cd concentration of field soil. Based on the predictive model of Cd transfer from soil to wheat, the SSRA model then linked sources to the Cd intake risk from wheat grain. Results showed that the mixed source and the atmospheric deposition source accounted for 52.8% and 29.3%, respectively, of the wheat Cd intake risk. In combination with the spatial analysis, the potential risk of Cd contamination in western and central eastern areas was mainly attributed to the mixed source of wastewater and industrial residues, whereas the risk in the northwestern area was associated mainly with atmospheric deposition. Regionalized risk management strategies, focusing on different sources, were proposed to minimize the Cd input to field cropping system and to mitigate health risk for local residents.Preterm birth (PTB), a serious adverse birth outcome, is the leading cause of perinatal mortality and morbidity. Bisphenols induce endocrine disruption that spreads across the placenta, which may affect fetal growth and development. However, the effects of bisphenols on PTB, particularly their combined effects, remain unknown. This study investigated the association between prenatal bisphenol exposure and PTB. Study participants were 2023 mother-infant pairs that were selected from the Guangxi Zhuang Birth Cohort. Maternal serum bisphenol levels were measured using ultrahigh performance liquid chromatography-tandem mass spectrometry, and pregnancy outcomes were obtained from medical records. Multivariate logistic regression, restricted cubic spline, principal component analysis (PCA), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) were used to examine the association between serum bisphenol levels and PTB. Ln-transformed BPA concentrations were associated with an increased risk of PTB only in female infants (OR = 1.30, 95% CI 1.02, 1.64). Ln-transformed bisphenol F (BPF) concentrations were positively associated with the risk of PTB (OR = 1.73, 95% CI 1.18, 2.55). Inverse U-shaped relationships were observed between bisphenol B (BPB), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) levels and the risk of PTB (P-overall less then 0.05, P-non-linear less then 0.05). After sex stratification, the association between BPA analogs and PTB was only observed in males. In Qgcomp analysis, bisphenol mixtures were related to an increased risk of PTB (OR = 1.52, 95% CI 1.04, 2.21), with BPF (43.7%), BPS (29.6%) and BPA (26.8%) having the greatest positive contribution. Results indicate that prenatal exposure to bisphenol mixtures might increase the risk of PTB, which might be primarily driven by BPA, BPF and BPS. There may also be sex-specific and nonmonotonic dose-dependent effects.Increasing evidence shows that human exposure to bisphenols can increase the risk of allergic disease, such as child asthma. However, the mechanism by which exposure to bisphenols causes allergic disease is unclear. In addition, the effects of exposure to bisphenols during pregnancy on infantile eczema have been poorly studied. The aim of our study was to investigate the effect of bisphenols (BPA, BPF and BPS) exposure during pregnancy on immune cells in cord blood, and on the occurrence of infantile eczema. 111 mother-child pairs with urine samples from pregnant women and cord blood were recruited from a birth cohort established in February 2019 in Shenyang, China. The levels of urinary bisphenols and Th1-, Th2-, Treg- and Th17-related genes, and cytokines in cord blood, as well as the incidence of infantile eczema at 6 and 12 months follow up were determined. Our results show that BPA, BPF and BPS were detected in 100%, 63.1% and 46.8% of the urine samples, respectively. The median concentration of urine specific gravity adjusted BPA (SG-BPA) was 7.46 ng/mL. High SG-BPA levels during pregnancy was independently associated with increased risk of infantile eczema (adjusted OR = 2.731, 95%CI 1.064-7.012, P = 0.037). Higher levels of FOXP3 gene in cord blood had a significantly lower risk of developing eczema in infants (adjusted OR=0.430, 95%CI 0.190-0.972, P = 0.042). However, BPS and BPF levels were not associated with infantile eczema. FOXP3 gene levels in cord blood mediated the relationship between SG-BPA levels during pregnancy and infantile eczema (indirect effect β = 0.350 [CI0.011,1.077]). Our findings indicate that high levels of BPA exposure during pregnancy increase the risk of infantile eczema, which may be associated with down-regulation of FOXP3 gene expression in cord blood.Rice (Oryza sativa L.) consumption represents a major route for the exposure to cadmium (Cd) and arsenic (As) in many countries. Two varieties of rice that were grown in soils contaminated with Cd and As were evaluated for the accumulation of these toxins in rice grains and the risks of exposure of local residents to Cd and As when treated with different amounts of silkworm excrement and types of water management. Silkworm excrement, water management and the variety of rice significantly affected the accumulation of Cd and As in rice. The combination of multiple measures can be more effective at reducing heavy metals than the use of single measure, i.e., silkworm excrement management, water management, and the selection of low accumulation variety. The use of a variety that accumulates low amounts of Cd combined with 1% silkworm excrement management can effectively increase the soil pH and electrical conductivity (EC) and decrease the contents of soil available Cd and the transfer coefficients of Cd in rice, subsequently reducing the concentrations of Cd in rice grains and lowering the health risks of the intake of Cd.

Autoři článku: Hofflara3688 (Rohde Mygind)