Hjorthklemmensen8387

Z Iurium Wiki

Monogenic diabetes (MD) represents 5-7% of antibody-negative diabetes cases and is a heterogeneous group of disorders.

We used targeted next-generation sequencing (NGS) on Illumina NextSeq 550 platform involving the SureSelect assay to perform genetic and clinical characteristics of a study group of 684 individuals, including 542 patients referred from 12 Polish Diabetes Centers with suspected MD diagnosed between December 2016 and December 2019 and their 142 family members (FM).

In 198 probands (36.5%) and 66 FM (46.5%) heterozygous causative variants were confirmed in 11 different MD-related genes, including 31 novel mutations, with the highest number in the GCK gene (206/264), 22/264 in the HNF1A gene and 8/264 in the KCNJ11 gene. Of the 183 probands with MODY1-5 diabetes, 48.6% of them were diagnosed at the pre-diabetes stage and most of them (68.7%) were on diet only at the time of genetic diagnosis, while 31.3% were additionally treated with oral hypoglycaemic drugs and/or insulin.

In summary, the results obtained confirm the efficacy of targeted NGS method in the molecular diagnosis of patients with suspected MD and broaden the spectrum of new causal variants, while updating our knowledge of the clinical features of patients defined as having MD.

In summary, the results obtained confirm the efficacy of targeted NGS method in the molecular diagnosis of patients with suspected MD and broaden the spectrum of new causal variants, while updating our knowledge of the clinical features of patients defined as having MD.Glycoside hydrolase family 31 (GH31) is a diversified family of anomer-retaining α-glycoside hydrolases, such as α-glucosidase and α-xylosidase, among others. Recently, GH31 α-N-acetylgalactosaminidases (Nag31s) have been identified to hydrolyze the core of mucin-type O-glycans and the crystal structure of a gut bacterium Enterococcus faecalis Nag31 has been reported. However, the mechanisms of substrate specificity and hydrolysis of Nag31s are not well investigated. Herein, we show that E. faecalis Nag31 has the ability to release N-acetylgalactosamine (GalNAc) from O-glycoproteins, such as fetuin and mucin, but has low activity against Tn antigen. Mutational analysis and crystal structures of the Michaelis complexes reveal that residues of the active site work in concert with their conformational changes to act on only α-N-acetylgalactosaminides. Docking simulations using GalNAc-attached peptides suggest that the enzyme mainly recognizes GalNAc and side chains of Ser/Thr, but not strictly other peptide residues. mTOR inhibitor Moreover, quantum mechanics calculations indicate that the enzyme preferred p-nitrophenyl α-N-acetylgalactosaminide to Tn antigen and that the hydrolysis progresses through a conformational itinerary, 4C1 → 1S3 → 4C1, in GalNAc of substrates. Our results provide novel insights into the diversification of the sugar recognition and hydrolytic mechanisms of GH31 enzymes.Impedance spectroscopy is a technique used to characterize electrochemical systems, increasing its applicability as well to monitor cell cultures. During their growth, Bacillus species have different phases which involve the production and consumption of different metabolites, culminating in the cell differentiation process that allows the generation of bacterial spores. In order to use impedance spectroscopy as a tool to monitor industrial interest Bacillus cultures, we conducted batch fermentations of Bacillus species such as B. subtilis, B. amyloliquefaciens, and B. licheniformis coupled with this technique. Each fermentation was characterized by the scanning of 50 frequencies between 0.5 and 5 MHz every 30 min. Pearson's correlation between impedance and phase angle profiles (obtained from each frequency scanned) with the kinetic profiles of each strain allowed the selection of fixed frequencies of 0.5, 1.143, and 1.878 MHz to follow-up of the fermentations of B. subtilis, B. amyloliquefaciens and B. licheniformis, respectively. Dielectric profiles of impedance, phase angle, reactance, and resistance obtained at the fixed frequency showed consistent changes with exponential, transition, and spore release phases.The industrial effluent contaminated with organic pollutants has been causing an increase in the toxicity of the ecosystem, causing a great environmental impact. Thus, the present work aims the green synthesis of silver nanoparticles (AgNPs) from Aloe vera, its characterization and antimicrobial activity against Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923). AgNPs were characterized by X-ray diffraction (XRD), Scanning Electronic Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), Zeta Potential (ZP) and N2 porosimetry (BET/BJH method). Antimicrobial activity were carried out by Minimal Inhibitory Concentration (MIC) method. The XRD demonstrated characteristic peaks of AgNPs at 38.29°; 44.55° and 64.81°, and SEM-EDS micrographs showed that AgNPs produced by biomolecules of Aloe vera extract resulted in a weight concentration around 92.59% silver, 7.15% oxygen and 0.26% chlorine. Regarding zeta potential, all samples showed negative electric charge (around -35.3 mV), while N2 porosimetry resulted in a surface specific area of 6.09 m2 g-1, with a volume and diameter pore of 0.032 cm³ g-1 and 33.47, respectively. Antimicrobial activity was observed at 15.62 µg mL-1 and 31.25 µg mL-1 for P. aeruginosa and S. aureus, respectively. Thus, AgNPs can be considered a promising nanoparticle for degradation of organic pollutants in aqueous solution as well as an adjuvant for treatment of microbial infections.Therapeutic hypothermia with modest results is the only treatment currently available for neonatal hypoxic ischemic encephalopathy (HIE). Endothelin B (ETB) receptors in the brain are shown to have neural restorative capacity. ETB receptors agonist sovateltide alone or as an adjuvant therapy may enhance neurovascular remodeling in HIE. Sprague-Dawley rat pups were grouped based on treatments into (1) Control; (2) HIE + Vehicle; (3) HIE + Hypothermia; (4) HIE + sovateltide; and (5) HIE + sovateltide + hypothermia. HIE was induced on postnatal day (PND) 7, followed by sovateltide (5 µg/kg) intracerebroventricular injection and/or hypothermia. On PND 10, brains were analyzed for the expression of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), ETB receptors, oxidative stress and cellular damage markers. Vehicle-treated animals had high oxidative stress level as indicated by an increase in lipid peroxidation factor, malondialdehyde, and decreased antioxidants, reduced glutathione and superoxide dismutase, compared to control. These effects were reversed in sovateltide alone (p less then 0.001) or in combination with the therapeutic hypothermia (p less then 0.001), indicating that ETB receptor activation reduces oxidative stress injury following HIE. Animals receiving sovateltide demonstrated a significant (p less then 0.0001) upregulation of ETB receptor, VEGF, and NGF expression in the brain compared to vehicle-treated animals. Additionally, sovateltide alone or in combination with therapeutic hypothermia significantly (p less then 0.001) reduced cell death when compared to vehicle or therapeutic hypothermia alone, demonstrating that sovateltide is neuroprotective and attenuates neural damage following HIE. These findings are important and merit additional studies for development of new interventions for improving neurodevelopmental outcomes after HIE.The electrophysiological properties of undifferentiated SH-SY5Y cells were examined during cultures prolonged even to 20 days by measuring the passive and active membrane properties at 5 days interval, as well as the spontaneous spiking activity. The results showed that culturing this cell for long time affected not only membrane shape but also their electrophysiological properties. In particular, these cells considerably varied their sodium and potassium voltage-dependent currents, various channels kinetic features and their excitable properties. These modifications would synergically contribute to the bioelectrical conversion of these cells and could be part of a more complex machinery with which the tumoral cell would regulate its survival advantage and resilience. Understanding these processes could add a new clue to the exploitation of this preclinical human neuronal model.Acute kidney injury (AKI) is characterized by a sudden loss of renal function and is associated with high morbidity and mortality. Tumor suppressor p53 and chemokine receptor CXCR4 were both implicated in the AKI pathology. Here, we report on the development and evaluation of polymeric CXCR4 antagonist (PCX) siRNA carrier for selective delivery to injured kidneys in AKI. Our results show that PCX/siRNA nanoparticles (polyplexes) provide protection against cisplatin injury to tubule cells in vitro when both CXCR4 and p53 are inhibited. The polyplexes selectively accumulate and are retained in the injured kidneys in cisplatin and bilateral ischemia reperfusion injury models of AKI. Treating AKI with the combined CXCR4 inhibition and p53 gene silencing with the PCX/sip53 polyplexes improves kidney function and decreases renal damage. Overall, our results suggest that the PCX/sip53 polyplexes have a significant potential to enhance renal accumulation in AKI and deliver therapeutic siRNA.Hepatic fibrosis, characterized by excessive reactive oxygen species (ROS) generation, hepatic stellate cells (HSCs) activation, and enormous extracellular matrix (ECM) production, can further cause liver cirrhosis, liver failure and liver cancer. However, the combination of limited solubility, low targeting, uncontrolled release and the sophisticated physiological barriers are tremendous challenges for therapeutic effect. In this study, we engineered a sequential delivery strategy based on autophagy inhibitor carvedilol (CAR) loaded and hyaluronic acid (HA) modified star-like Au nanozyme (Au NS@CAR-HA) for targeted HSCs suppression. In hepatic fibrosis acidic environment, CAR-HA can be firstly detached from Au NS@CAR-HA. Then, CAR would be released from CAR-HA conjugation by chemical bond breakage which triggered by intracellular acid potential, thus could suppressing autolysosome generation by up-regulation of autosome and lysosome pH value to inhibit HSCs activation. Meanwhile, Au NS exhibited enhanced ROS scavenging efficiency of hydrogen peroxides and superoxide, which was helpful to restrain the activity of peroxisome proliferators-activated receptors β (PPARβ) and c-Jun N-terminal kinase (JNK), thereby reducing HSCs proliferation to enhance HSCs inactivation efficacy. In conclusion, Au NS@CAR-HA can attenuate hepatic fibrosis via regulating the proliferation and activation of hepatic stellate cells, which provides a new strategy for hepatic fibrosis treatment.Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.

Autoři článku: Hjorthklemmensen8387 (Booker Ruiz)