Hjelmparsons7896

Z Iurium Wiki

Perovskite-like ABX3 metal-organic frameworks (MOFs) have gathered great interest due to their intriguing chemical and physical properties, including their magnetism, ferroelectricity, and multiferroicity. Pressure is an effective thermal parameter in tuning related properties in MOFs due to the adjustable organic framework. Though spectrum experiments have been made on the structural evolution during decompression, there is a lack of electrical studies on the order-disorder ferroelectric transition in the metal-organic frameworks under pressure. In this work, we use a static pyroelectric current measurement, a dynamic dielectric method combined with a Raman scattering technique with applying in situ pressure, to explore the order-disorder ferroelectric transition in [(CH3)2NH2]Co(HCOO)3. The ferroelectric transition vanishes around the external pressure of 1.6 GPa, emerging with a new paraelectric phase. Another phase transition was observed at 6.32 GPa, mainly associated with the distortive transition of DMA+ cations. A phenomenological theory of ferroelectricity vanishing at 1.6 GPa for [(CH3)2NH2]Co(HCOO)3 is also discussed. Our study gives a comprehensive understanding in the pressure tuning of ferroelectric properties in hybrid inorganic-organic materials.It is still a grand challenge to exploit efficient catalysts to achieve sustainable photocatalytic N2 reduction under ambient conditions. Here, we developed a ruthenium-based single-atom catalyst anchored on defect-rich TiO2 nanotubes (denoted Ru-SAs/Def-TNs) as a model system for N2 fixation. The constructed Ru-SAs/Def-TNs exhibited a catalytic efficiency of 125.2 μmol g-1 h-1, roughly 6 and 13 times higher than those of the supported Ru nanoparticles and Def-TNs, respectively. Through ultrafast transient absorption and photoluminescence spectroscopy, we revealed the relationship between catalytic activity and photoexcited electron dynamics in such a model SA catalytic system. The unique ligand-to-metal charge-transfer state formed in Ru-SAs/Def-TNs was found to be responsible for its high catalytic activity because it can greatly promote the transfer of photoelectrons from Def-TNs to the Ru-SAs center and the subsequent capture by Ru-SAs. This work sheds light on the origin of the high performance of SA catalysts from the perspective of photoexcited electron dynamics and hence enriches the mechanistic understanding of SA catalysis.Singlet fission-whereby one absorbed photon generates two coupled triplet excitons-is a key process for increasing the efficiency of optoelectronic devices by overcoming the Shockley-Queisser limit. A crucial parameter is the rate of dissociation of the coupled triplets, as this limits the number of free triplets subsequently available for harvesting and ultimately the overall efficiency of the device. Here we present an analysis of the thermodynamic and kinetic parameters for this process in parallel and herringbone dimers measured by electron paramagnetic resonance spectroscopy in coevaporated films of pentacene in p-terphenyl. The rate of dissociation is higher for parallel dimers than for their herringbone counterparts, as is the rate of recombination to the ground state. DFT calculations, which provide the magnitude of the electronic coupling as well as the distribution of molecular orbitals for each geometry, suggest that weaker triplet coupling in the parallel dimer is the driving force for faster dissociation. Conversely, localization of the molecular orbitals and a stronger triplet-triplet interaction result in slower dissociation and recombination. The identification and understanding of how the intermolecular geometry promotes efficient triplet dissociation provide the basis for control of triplet coupling and thereby the optimization of one important parameter of device performance.A single molecule offers to tailor and control the probing capability of a scanning tunneling microscope when placed on the tip. selleck chemicals llc With the help of first-principles calculations, we show that on-tip spin sensitivity is possible through the Kondo ground state of a spin S = 1/2 cobaltocene molecule. When attached to the tip apex, we observe a reproducible Kondo resonance, which splits apart upon tuning the exchange coupling of cobaltocene to an iron atom on the surface. The spin-split Kondo resonance provides quantitative information on the exchange field and on the spin polarization of the iron atom. We also demonstrate that molecular vibrations cause the emergence of Kondo side peaks, which, unlike the Kondo resonance, are sensitive to cobaltocene adsorption.The understanding of the formation of silicate oligomers in the initial stage of zeolite synthesis is important. The use of organic structure-directing agents (OSDAs) is known to be a key factor in the formation of different silicate species and the final zeolite structure. For example, tetraethylammonium ion (TEA+) is a commonly used organic template for zeolite synthesis. In this study, ab initio molecular dynamics (AIMD) simulation is used to provide an understanding of the role of TEA+ in the formation of various silicate oligomers, ranging from dimer to 4-ring. Calculated free-energy profiles of the reaction pathways show that the formation of a 4-ring structure has the highest energy barrier (97 kJ/mol). The formation of smaller oligomers such as dimer, trimer, and 3-ring has lower activation barriers. The TEA+ ion plays an important role in regulating the predominant species in solution via its coordination with silicate structures during the condensation process. The kinetics and thermodynamics of the oligomerization reaction indicate a more favorable formation of the 3-ring over the 4-ring structure. The results from AIMD simulations are in line with the experimental observation that TEA+ favors the 3-ring and double 3-ring in solution. The results of this study imply that the role of OSDAs is not only important for the host-guest interaction but also crucial for controlling the reactivity of different silicate oligomers during the initial stage of zeolite formation.The refinement of XRD patterns only provides the average structure parameters for the alloying materials because of the symmetric protection. Raman vibrational modes can append the detailed information about the bond length and structure. The refinements of XRD patterns for Bi alloying Cs2AgInCl6 revealed the strong structure distortion with the enlarged octahedron of In(Bi)Cl6 and the contracted octahedron of AgCl6 with the increasing Bi. Raman spectra supported the expanded octahedron of InCl6 and the reduced octahedron of AgCl6 but identified the anomalous shortening bond length of Bi-Cl with the increasing Bi. These distorting octahedrons break parity forbidden transition, modify Huang-Rhys factor, and result in the maximum values at 30% Bi alloying and the same variation trend for both photoluminescence and Huang-Rhys factor with the increasing Bi alloying.

Autoři článku: Hjelmparsons7896 (Bean McNeil)