Hintonzacho9217
Forward osmosis (FO) is a low-pressure membrane process that can selectively separate low molecular weight neutral compounds such as ammonia from urine. However, an understanding of how un-ionized ammonia transfers is vital for maximizing ammonia recovery. Therefore, this research aimed to determine the transport behavior of low molecular weight neutral nitrogen compounds in order to maximize ammonia recovery from real hydrolyzed human urine by FO. Using urea as a model, batch FO experiments concluded that low molecular weight neutral compound transfer is dependent on concentration equilibrium between the feed and draw solutions due to its ability to freely move across the FO membrane. Therefore, 50% recovery is the theoretical maximum that could be achieved. However, novel strategic pH manipulation between the feed and the draw solution allowed for up to 86% recovery of ammonia by keeping the draw solution pH 11, overcoming the 50% recovery barrier. An economic analysis showed that ammonia recovery by FO has the potential to be more economically favorable compared to ammonia air stripping or ion exchange if the proper draw solute is chosen.This study investigated the UV254 photolysis of free available chlorine and bromine species in water. The intrinsic quantum yields for •OH and X• (X = Cl or Br) generation were determined by model fitting of formaldehyde formation using a tert-butanol assay to be 0.61/0.45 for HOCl/OCl- and 0.32/0.43 for HOBr/OBr-. The steady-state •OH concentration in UV/HOX was higher than that in UV/OX- by a factor of 23.3 and 7.8 for Cl and Br, respectively. Gefitinib cell line This was attributed to the different •OH consumption rate by HOCl versus OCl-, while for HOBr/OBr-, both the •OH formation and consumption rates were implied. This was supported by a k of 1.4 × 108 M-1 s-1 for the •OH reaction with HOCl, which was >14 times less than the k for •OH reactions with OCl-, HOBr, and OBr-. Formation of ClO3- and BrO3- was found to be significant with apparent quantum yields of 0.12-0.23. A detailed mechanistic study on the formation of XO3- including a new pathway involving XO• is presented, which has important implications as the level of XO3- can exceed the regulation (BrO3-) or guideline (ClO3-) values during UV/halogen oxidant water treatment. Our new kinetic models well simulate the experimental results for the halogen oxidant decomposition, probe compound degradation, and formation of ClO3- and BrO3-.A phosphate (Pi)-selective adsorption system featuring immobilized Pi-binding proteins (PBP) has recently attracted attention for ultralow Pi removal followed by recovery. This study investigated the adsorption kinetics, affinity, thermodynamics, and selectivity, as well as the effect of pH and temperature on Pi adsorption using immobilized PBP (PBP resin). Immobilizing PBP did not affect its Pi affinity. Kinetic studies at 22 °C and pH 7.1 showed that the PBP resin achieved 95% of its equilibrium capacity within 0.64 ± 0.2 min. The estimated Langmuir affinity constant (K L ) was 21 ± 5 μM-1 Pi (220 ± 52 L/mg-Pi), which is higher than Pi adsorbents recently reported in literature. The ideal operating ranges for high-affinity Pi adsorption using PBP resin were pH 4.5 to 9 and temperature 14 to 37 °C. The Pi-PBP resin adsorption process was not affected by the presence of common anions (Cl-, Br-, NO2-, NO3-, SO42-, and HCO3-). Adsorption using the Pi-PBP resin was exothermic (ΔH = -6.3 ± 1.3 kJ/mol) and spontaneous (ΔG = -39.7 ± 0.1 to -43.2 ± 0.2 kJ/mol) between 14 and 43 °C. These results indicate that PBP resin's Pi adsorption rate and affinity surpass those of existing adsorbents. Future work to increase the PBP resin's adsorption capacity is important to its application as a viable Pi adsorbent.Biotransformation of selenite to valuable elemental selenium nanoparticles (Se0) is a promising avenue to remediate seleniferous environments and simultaneously recover selenium (Se). However, the underlying oxyanion competition and selenite transformation mechanism in prokaryotes are poorly understood. In this work, the impacts of phosphate on selenite uptake and transformation were elucidated with Escherichia coli and its mutant deficient in phosphate transport as model microbial strains. Selenite uptake was inhibited by phosphate in E. coli. Moreover, the transformation of internalized Se was shifted from Se0 to toxic organo-Se with elevated phosphate levels, as evidenced by the linear combination fit analysis of the Se K-edge X-ray absorption near-edge structure. Such a phosphate-regulated selenite biotransformation process was mainly assigned to the competitive uptake of phosphate and selenite, which was primarily mediated by a low affinity phosphate transporter (PitA). Under phosphate-deficient conditions, the cells not only produced abundant Se0 nanoparticles but also maintained good cell viability. These findings provide new insights into the phosphate-regulated selenite biotransformation by prokaryotes and contribute to the development of new processes for bioremediating Se-contaminated environments, as well as bioassembly of Se0.Optical gas imaging (OGI) is a commonly utilized leak detection method in the upstream and midstream sectors of the U.S. natural gas industry. This study characterized the detection efficacy of OGI surveyors, using their own cameras and protocols, with controlled releases in an 8-acre outdoor facility that closely resembles upstream natural gas field operations. Professional surveyors from 16 oil and gas companies and 8 regulatory agencies participated, completing 488 tests over a 10 month period. Detection rates were significantly lower than prior studies focused on camera performance. The leak size required to achieve a 90% probability-of-detection in this study is an order-of-magnitude larger than prior studies. Study results indicate that OGI survey experience significantly impacts leak detection rate Surveyors from operators/contractors who had surveyed more than 551 sites prior to testing detected 1.7 (1.5-1.8) times more leaks than surveyors who had completed fewer surveys. Highly experienced surveyors adjust their survey speed, examine components from multiple viewpoints, and make other adjustments that improve their leak detection rate, indicating that modifications of survey protocols and targeted training could improve leak detection rates overall.