Hinsonbecker8844

Z Iurium Wiki

Recently, an anomalous excess was found in the electronic recoil data collected at the XENON1T experiment. The excess may be explained by an axionlike particle (ALP) with a mass of a few keV and a coupling to electron of g_ae∼10^-13, if the ALP constitutes all or some fraction of local dark matter (DM). In order to satisfy the x-ray constraint, the ALP coupling to photons must be significantly suppressed compared to that to electrons. This strongly suggests that the ALP has no anomalous couplings to photons; i.e., there is no U(1)_PQ-U(1)_em-U(1)_em anomaly. We show that such anomaly-free ALP DM predicts an x-ray line signal with a definite strength through the operator arising from threshold corrections, and compare it with the projected sensitivity of the ATHENA x-ray observatory. The abundance of ALP DM can be explained by the misalignment mechanism, or by thermal production if it constitutes a part of DM. In particular, we find that the anomalous excess reported by the XENON1T experiment as well as the stellar cooling anomalies from white dwarfs and red giants can be explained simultaneously better when the ALP constitutes about 10% of DM. As concrete models, we revisit the leptophilic anomaly-free ALP DM considered in K. Nakayama, F. Takahashi, and T. T. Yanagida [Phys. Lett. B 734, 178 (2014)] as well as an ALP model based on a two Higgs doublet model in the Supplemental Material.We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr_4S_8. We observe an unconventional magnetic excitation spectrum with a separation of high- and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parametrize the spin Hamiltonian. We find that interactions are ferromagnetic within the large and small tetrahedra of the breathing pyrochlore lattice, but antiferromagnetic further-neighbor interactions are also essential to explain our data, in qualitative agreement with density-functional-theory predictions [Ghosh et al., npj Quantum Mater. 4, 63 (2019)2397-464810.1038/s41535-019-0202-z]. Kinase Inhibitor Library purchase We explain the origin of geometrical frustration in LiGaCr_4S_8 in terms of net antiferromagnetic coupling between emergent tetrahedral spin clusters that occupy a face-centered-cubic lattice. Our results provide insight into the emergence of frustration in the presence of strong further-neighbor couplings, and a blueprint for the determination of magnetic interactions in classical spin liquids.In the age of the post-Moore era, the next-generation computing model would be a hybrid architecture consisting of different physical components, such as photonic chips. In 2008, it was proposed that the solving of the NAND-tree problem can be sped up by quantum walk. This scheme is groundbreaking due to the universality of the NAND gate. However, experimental demonstration has not been achieved so far, mostly due to the challenge in preparing the propagating initial state. Here we propose an alternative solution by including a structure called a "quantum slide," where a propagating Gaussian wave packet can be generated deterministically along a properly engineered chain. In our experimental demonstration, the optical NAND tree is capable of solving computational problems with a total of four input bits, based on the femtosecond laser 3D direct-writing technique on a photonic chip. These results remove one main roadblock to photonic NAND-tree computation, and the construction of a quantum slide may find other interesting applications in quantum information and quantum optics.Long-range coherent interactions between quantum emitters are instrumental for quantum information and simulation technologies, but they are generally difficult to isolate from dissipation. Here, we show how such interactions can be obtained in photonic Weyl environments due to the emergence of an exotic bound state whose wave function displays power-law spatial confinement. Using an exact formalism, we show how this bound state can mediate coherent transfer of excitations between emitters, with virtually no dissipation and with a transfer rate that follows the same scaling with distance as the bound state wave function. In addition, we show that the topological nature of Weyl points translates into two important features of the Weyl bound state, and, consequently, of the interactions it mediates first, its range can be tuned without losing the power-law confinement, and, second, they are robust under energy disorder of the bath. To our knowledge, this is the first proposal of a photonic setup that combines simultaneously coherence, tunability, long range, and robustness to disorder. These findings could ultimately pave the way for the design of more robust long-distance entanglement protocols or quantum simulation implementations for studying long-range interacting systems.We statistically study vortex reconnections in quantum fluids by evolving different realizations of vortex Hopf links using the Gross-Pitaevskii model. Despite the time reversibility of the model, we report clear evidence that the dynamics of the reconnection process is time irreversible, as reconnecting vortices tend to separate faster than they approach. Thanks to a matching theory devised concurrently by Proment and Krstulovic [Phys. Rev. Fluids 5, 104701 (2020)PLFHBR2469-990X10.1103/PhysRevFluids.5.104701], we quantitatively relate the origin of this asymmetry to the generation of a sound pulse after the reconnection event. Our results have the prospect of being tested in several quantum fluid experiments and, theoretically, may shed new light on the energy transfer mechanisms in both classical and quantum turbulent fluids.Phase matching refers to a process in which atom-field interactions lead to the creation of an output field that propagates coherently through the interaction volume. By studying light scattering from arrays of cold atoms, we show that conditions for phase matching change as the dimensionality of the system decreases. In particular, for a single atomic chain, there is phase-matched reflective scattering in a cone about the symmetry axis of the array that scales as the square of the number of atoms in the chain. For two chains of atoms, the phase-matched reflective scattering can be enhanced or diminished as a result of Bragg scattering. Such scattering can be used for mapping collective states within an array of neutral atoms onto propagating light fields and for establishing quantum links between separated arrays.

Autoři článku: Hinsonbecker8844 (Lau Snider)