Highgarrison6274

Z Iurium Wiki

Significance Advancements in and access to health care have led to unprecedented improvements in the quality of life and increased lifespan of human beings in the past century. However, aging is a significant risk factor for neurodegenerative diseases (NDs). Hence, improved life expectancy has led to an increased incidence of NDs. Despite intense research, effective treatments for NDs remain elusive. The future of neurotherapeutics development depends on effective disease modification strategies centered on carefully scrutinized targets. Recent Advances As a promising new direction, recent evidence has demonstrated that epigenetic processes modify diverse biochemical pathways, including those related to NDs. Small non-coding RNAs, known as microRNAs (miRNAs), are components of the epigenetic system that alter the expression of target genes at the post-transcriptional level. Critical Issues miRNAs are expressed abundantly in the central nervous system and are critical for the normal functioning and survival of neurons. Here, we review recent advances in elucidating miRNAs' roles in NDs and discuss their potential as therapeutic targets. In particular, neuroinflammation is a major pathological hallmark of NDs and miR146a is a crucial regulator of inflammation. Future Directions Finally, we explore the possibilities of developing miR146a as a potential biomarker and therapeutic target where additional research may help facilitate the detection and amelioration of neuroinflammation in NDs.Background Major depressive disorder (MDD) is a mood disorder associated with disruptions in emotional control. Previous studies have investigated abnormal regional activity and connectivity within the fronto-limbic circuit. However, condition-specific connectivity changes and their association with the pathophysiology of MDD remain unexplored. This study investigated effective connectivity in the fronto-limbic circuit induced by negative emotional processing from patients with MDD. Methods Thirty-four unmedicated female patients with MDD and 28 healthy participants underwent event-related functional magnetic resonance imaging at 7T while viewing emotionally negative and neutral images. Brain regions whose dynamics are driven by experimental conditions were identified by using statistical parametric mapping. Effective connectivity among regions of interest was then estimated by using dynamic causal modeling. Results Patients with MDD had lower activation of the orbitofrontal cortex (OFC) and higher activation of the parahippocampal gyrus (PHG) than healthy controls (HC). In association with these regional changes, we found that patients with MDD did not have significant modulatory connections from the primary visual cortex (V1) to OFC, whereas those connections of HC were significantly positively modulated during negative emotional processing. Regarding the PHG activity, patients with MDD had greater modulatory connection from the V1, but reduced negative modulatory connection from the OFC, compared with healthy participants. Conclusions These results imply that disrupted effective connectivity among regions of the OFC, PHG, and V1 may be closely associated with the impaired regulation of negative emotional processing in the female patients with MDD.Background Movement disorders encompass various conditions affecting the nervous system. The pathological processes underlying movement disorders lead to aberrant synaptic plastic changes, which in turn alter the functioning of large-scale brain networks. Therefore, clinical phenomenology does not only entail motor symptoms but also cognitive and motivational disturbances. The result is the disruption of motor learning and motor behavior. Due to this complexity, the responsiveness to standard therapies could be disappointing. Specific forms of rehabilitation entailing goal-based practice, aerobic training, and the use of noninvasive brain stimulation techniques could "restore" neuroplasticity at motor-cognitive circuitries, leading to clinical gains. This is probably associated with modulations occurring at both molecular (synaptic) and circuitry levels (networks). Several gaps remain in our understanding of the relationships among plasticity and neural networks and how neurorehabilitation could promote clinical gains is still unclear. Purposes In this review, we outline first the networks involved in motor learning and behavior and analyze which mechanisms link the pathological synaptic plastic changes with these networks' disruption in movement disorders. Therefore, we provide theoretical and practical bases to be applied for treatment in rehabilitation.Background Temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) is a common intractable epilepsy. To seek neural correlates of seizure recurrence, this study investigated aberrant intrinsic effective connectivity (iEC) in TLE with unilateral MTS and their associations with seizure frequency. Methods Thirty patients with unilateral MTS (left/right MTS = 14/16) and 37 age-matched healthy controls underwent resting-state functional magnetic resonance imaging (rsfMRI) on a 3-Tesla magnetic resonance imaging (MRI) system. The structural equation modeling was employed to estimate the iEC of the three candidate epilepsy models, including the Papez circuit, hippocampal-diencephalic-cingulate (HDC) model, and simplified HDC model. After comparing the performance of model fitting, the best model was selected to compare iEC among the study groups. The linear regression analysis was performed to associate abnormal iEC with seizure frequency. Results The simplified HDC model was the best model to estimate iEC across the three study groups (p  less then  0.05), and it composed of the 26 interconnected pathway between the mesial temporal lobe, thalamus, and cingulate cortices. The linear regression analysis revealed a significant relationship between the shared iEC alterations in both patient groups and seizure frequency (adjusted-R2 = 0.350; p = 0.037), including the three paths of mammillary body (MB) → bilateral anterior thalamic nuclei (left standardized β-value = 0.580, p = 0.013; right standardized β-value = -0.711, p = 0.006) and right hippocampus → MB (standardized β-value = 0.541, p = 0.045). Conclusions Our findings provide new insights into neurophysiological significance relevant to seizure recurrence. JAK inhibitor Aberrant iEC on the neural paths connected to the MB can be a potential imaging marker, aiding the therapeutic management in TLE with unilateral MTS.

Autoři článku: Highgarrison6274 (Clemmensen Vasquez)