Hickssalas5391
Bacterial tolerance to antibiotics causes reduction in efficacy in antimicrobial treatment of chronic and recurrent infections. Nutrient availability is one major factor that determines the degree of phenotypic antibiotic tolerance. In an attempt to test if specific nutrients can reverse phenotypic tolerance, we identified N-acetyl-D-glucosamine (GlcNAc) as a potent tolerance-suppressing agent and showed that it could strongly re-sensitize a tolerant population of E. coli to ampicillin. Such re-sensitization effect was attributable to two physiology-modulating effects of GlcNAc. First, uptake of GlcNAc by the tolerant population triggers formation of the peptidoglycan precursor UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) and subsequently re-activates the peptidoglycan biosynthesis process, rendering the organism susceptible to β-lactam antibiotics. Second, activation of glycolysis by-products of GlcNAc catabolism drives the re-sensitization process. Our findings imply that GlcNAc may serve as a non-toxic β-lactam adjuvant that enhances the efficacy of treatment of otherwise hard-to-treat bacterial infections due to phenotypic antibiotic tolerance.The ability to group sensory data into behaviorally meaningful classes and to maintain these perceptual categories active in working memory is key to intelligent behavior. Here, we show that carrion crows, highly vocal and cognitively advanced corvid songbirds, possess categorical auditory working memory. The crows were trained in a delayed match-to-category task that required them to flexibly match remembered sounds based on the upward or downward shift of the sounds' frequency modulation. After training, the crows instantaneously classified novel sounds into the correct auditory categories. The crows showed sharp category boundaries as a function of the relative frequency interval of the modulation. In addition, the crows generalized frequency-modulated sounds within a category and correctly classified novel sounds kept in working memory irrespective of other acoustic features of the sound. This suggests that crows can form and actively memorize auditory perceptual categories in the service of cognitive control of their goal-directed behaviors.Evolution is generally considered to be unpredictable because genetic variations are known to occur randomly. However, remarkable patterns of repeated convergent evolution are observed, for instance, loss of pigments by organisms living in caves. Analogous phenotypes appear in similar environments, sometimes in response to similar constraints. Alongside randomness, a certain evolutionary determinism also exists, for instance, the selection of particular phenotypes subjected to particular environmental constraints in the "evolutionary funnel." We pursue the idea that eco-evolutionary specialization is in some way determinist. The conceptual framework of phenotypic changes entailing specialization presented in this essay explains how evolution can be predicted. We also discuss how the predictability of evolution could be tested using the case of metabolic specialization through gene losses. We also put forward that microorganisms could be key models to test and possibly make headway evolutionary predictions and knowledge about evolution.Evolution gave rise to creatures that are arguably more sophisticated than the greatest human-designed systems. This feat has inspired computer scientists since the advent of computing and led to optimization tools that can evolve complex neural networks for machines-an approach known as "neuroevolution." After a few successes in designing evolvable representations for high-dimensional artifacts, the field has been recently revitalized by going beyond optimization to many, the wonder of evolution is less in the perfect optimization of each species than in the creativity of such a simple iterative process, that is, in the diversity of species. This modern view of artificial evolution is moving the field away from microevolution, following a fitness gradient in a niche, to macroevolution, filling many niches with highly different species. It already opened promising applications, like evolving gait repertoires, video game levels for different tastes, and diverse designs for aerodynamic bikes.Regulations of cell motility and proliferation are essential for epithelial development and homeostasis. However, it is not fully understood how these cellular activities are coordinated in epithelial collectives. In this study, we find that keratinocyte sheets exhibit time-dependent coordination of collective cell movement and cell cycle progression after seeding cells. Cell movement and cell cycle progression are coordinately promoted by Rac1 in the "early phase" (earlier than ∼30 h after seeding cells), which is not abrogated by increasing the initial cell density to a saturated level. The Rac1 activity is gradually attenuated in the "late phase" (later than ∼30 h after seeding cells), leading to arrests in cell motility and cell cycle. Intact adherens junctions are required for normal coordination between cell movement and cell cycle progression in both early and late phases. Our results unveil a novel basis for integrating motile and proliferative behaviors of epithelial collectives.Upon heat shock, the fission yeast Hsp40 chaperone Mas5 drives temperature-sensitive proteins toward protein aggregate centers (PACs) to avoid their degradation until lower temperatures favor their refolding. We show here that cells lacking Mas5 are resistant to oxidative stress. RK 24466 Components of the general stress pathways, the MAP kinase Sty1 and the transcription factor Atf1, are suppressors of this phenotype. Strain Δmas5 expresses higher levels of Sty1- and Atf1-dependent stress genes than wild-type cells. Pyp1, the main tyrosine phosphatase maintaining Sty1 inactive in the absence of stress, is a temperature-sensitive protein that aggregates upon temperature up-shifts in a Mas5-dependent manner. In strain Δmas5, Pyp1 is sent to proteasomal degradation even in the absence of stress. We propose that Pyp1 is a thermo-sensitive phosphatase, which during heat stress coalescences into PACs in a Mas5-dependent manner, to promote full activation of the anti-stress Sty1-Atf1 cascade.