Hickmanbendsen4186

Z Iurium Wiki

The present study aims to identify a potential substitute for the harmful synthetic fibers in the field of polymer composites. With this objective, a comprehensive characterization of Derris scandens stem fibers (DSSFs) was carried out. The presence of high strength gelatinous fibers with a traditional hierarchical cell structure was found in the anatomical study. The chemical compositional analysis estimated the cellulose, hemicellulose, and lignin contents of 63.3 wt%, 11.6 wt%, and 15.3 wt%, respectively. Further analysis with XRD confirmed the presence of crystalline cellulose having a size of 11.92 nm with a crystallinity index of 58.15%. SEM and AFM studies show that these fibers are porous, and the average roughness is 105.95 nm. Single fiber tensile tests revealed that the DSSFs exhibited the mean Young's modulus and tensile strength of 13.54 GPa and 633.87 MPa respectively. Furthermore, the extracted fibers were found to be thermally stable up to 230 °C, as confirmed by thermogravimetric analysis. The fibers extracted from the stem of medicinal plant Derris scandens have the properties comparable to that of existing natural fibers, thus, suggesting it to use as a highly promising reinforcing agent alternative to synthetic fibers in polymer matrix composites.The aim of this work is to prepare nanofibrous scaffolds based on poly (l-lactide-d, l-lactide)/poly (acrylic acid) [PLDLLA/PAAc] blends in the presence of Dexamethasone [Dexa]-loaded poly (2-hydroxyethyl methacrylate) [HEMA] as molecular imprinted polymer [MIP] nanoparticles [NPs] for enhancing osteogenesis. By adding 10 wt% of PAAc to the PLDLLA and employing response surface methodology, the average diameter of the electrospun nanofibers is approximately 237 nm. To increase the osteogenesis performance of the optimized nanofibrous scaffolds, the MIP nanoparticles are synthesized using HEMA monomer and Dexa template with a molar ratio of 10 to 1. Accordingly, these crosslinked drug nanocarriers exhibit an average diameter of around 122 nm and imprinting factor of approximately 1.8, enabling to adsorb Dexa molecules around 57%. Afterward, the Dexa-loaded MIP NPs have capability of a controlled drug release with ultimate value of 60% during 72 h. The simultaneous use of PLDLLA/PAAc-10 nanofibrous scaffold and Dexa-loaded MIP NPs within the cultivation media of fibroblast and mesenchymal stem cells is carried out by thiazolyl blue assay and acridine/ethidium bromide staining as well as alkaline phosphate/calcium content test, and alizarin red staining. The results reveal the remarkable efficiency of the blend nanofibers besides the MIP containing Dexa, thereby using for bone tissue engineering applications, potentially.This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. selleck kinase inhibitor Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.Sericin is a soluble globular protein, present in Bombyx mori silkworm cocoons. Sericin's properties can be improved to expand its application by producing blends with other substances, such as alginate polysaccharide and crosslinking agent poly(vinyl alcohol). This study evaluates the use of alginate and sericin particles chemically crosslinked with poly(vinyl alcohol) (SAPVA) for batch bioadsorption of rare-earth element ytterbium from aqueous medium. The equilibrium study showed that the maximum bioadsorption capacity for ytterbium was 0.642 mmol/g at 55 °C. Equilibrium data fit both Langmuir and Dubinin-Radushkevich models. The estimation of thermodynamic parameters showed that there was an increase in the entropy change, and that the bioadsorption process is endothermic and spontaneous. Characterization analyzes revealed that SAPVA particles, even after ytterbium bioadsorption, showed spherical shape, homogeneous composition, amorphous structure, low surface area, macropores, and low porosity. After the first regeneration cycle, the amount of captured ytterbium ions showed a slight increase (about 0.01 mmol/g) and calcium ions were completely released by SAPVA particles. Bioadsorbent particles separated selectively ytterbium from synthetic effluent containing different toxic metal ions. These results show that the SAPVA particles can be used as an effective bioabsorbent to remove and recover ytterbium from wastewater.Ligustrum quihoui (L. quihoui) is an important hedge material for landscaping and also possesses medicinal value. To generate genomic resources for better understanding the evolutionary history of this important plant, the organelle genomes of L. quihoui are de novo assembled and functionally annotated. Compared with other Oleaceae species, the 163,069 bp chloroplast genome of L. quihoui exhibits a typical quadripartite structure with highly conserved gene content and gene order, while the 848,451 bp mitochondrial genome of L. quihoui exhibits highly divergent genome size and gene content. Codon usage analyses show that genes related with photosynthesis and mitochondrial respiratory chain show inconsistent codon biases. A total of 48,760 bp transposable elements (TEs) fragments and 41,887 bp chloroplast-like sequences are found in the L. quihoui mitochondrial genome. A striking discrepancy of RNA editing between the two organelle genomes is found in L. quihoui, in which 146 mitochondrial editing sites coexist with only 43 such sites in chloroplast.

Autoři článku: Hickmanbendsen4186 (Larkin Hendrix)