Hickeyrussell8250

Z Iurium Wiki

Wastewater treatment is a severe environment issue, especially the discharge of excessive synthetic dyestuffs in the aquatic environment. Adenosine Cyclophosphate compound library chemical In this study, a facile binary deep eutectic solvothermal process plus silica surface modification was successfully applied for preparation of porous nanosheet Ni2CO3(OH)2/SiO2 composites. The composites show powerful anionic dyes removal ability due to the high specific surface areas, hydrogen bond connection, coordination effect and strong electrostatic interactions with anionic dyes. A maximum adsorption capacity of 2637 mg g-1 at neutral pH (ca.7) and 303 K was achieved for Ni2CO3(OH)2/SiO2 composite to adsorb Congo red, a representative anionic dye. Moreover, the composite has an excellent specificity for anionic dyes and could maintain above 95% removal efficiency after 5 cycles. Therefore, the as-prepared nanocomposites could be qualified as candidates for industrial environmental remedy. Furthermore, the proposed material preparation strategy could be extended to fabricate various advanced energy and environmental materials.The surface atomic coordination and arrangement largely determine photocatalytic properties. Whereas, the intrinsic impact of surface microstructures on the reaction mechanism and pathway is still unclear. Herein, via constructing N-doped Bi2O2CO3 photocatalysts with diverse exposed facets, (1 1 0) and (0 0 1) facet, we testify that the pivotal roles of crystal facet and doping effect on the intermediate production and reactivity for photocatalytic nitric oxide (NO) abatement. The photoreactivity of N-doped Bi2O2CO3 is documented to be higher than that of the pure samples because of the enhanced light absorption and charge transfer. Further in situ probing experiments and theoretical calculations verify that the unique adsorption patterns and activated intermediates on the (1 1 0) facet facilitate the formation of final products and inhibit the generation of toxic NO2 by-product in terms of thermodynamics. More importantly, we found that the selective and nonselective oxidation processes are emerged over (1 1 0) and (0 0 1) facets of Bi2O2CO3, respectively.High-performance microwave absorption absorbers play important roles in the fields of radar stealth, electromagnetic protection, and antenna technology. In this work, high aspect-ratio Ag nanowires were decorated with magnetic CoNi nanoparticles via a PVP-induced solvothermal method, and then amorphous Sn(OH)2/SnO2 shells were introduced through an in-situ oxidative hydrolysis method, successfully preparing Ag-CoNi@Sn(OH)2/SnO2 composites. The morphology and ingredient of composites were ascertained by SEM, TEM, XRD, EDX, and XPS. As Ag-CoNi nanocomposites are coated by Sn(OH)2/SnO2 shells, the minimum reflection loss value is decreased from -31.7 dB (10.1 GHz) to -37.8 dB (6.4 GHz), and the maximum effective absorption bandwidth is extended from 3.9 GHz (10.3-14.2 GHz) to 5.8 GHz (10.7-16.5 GHz). Analyses of electromagnetic parameters reveal the possible mechanisms, involving surface plasma resonance, conductive loss, interfacial polarization, dipole polarization, exchange resonance, eddy current effect, multiple reflection and scattering. Thus, Ag nanowires modified with CoNi nanoparticles and amorphous Sn(OH)2/SnO2 shells can effectively balance the impedance matching and attenuation capability. It is a new strategy to achieve broadband microwave absorbers.We have investigated the feasibility of a new two-step protocol for the restoration of marbles. The process employs a polyelectrolyte multilayer film that enhances the chemical affinity between the treated stone and restorative material (hydroxyapatite nanocrystals), through functionalization, while at the same time it attributes an acid resistant property to the resulting system. Surface functionalization and material deposition is achieved through spraying; a simple and versatile application method suitable for objects of various sizes and geometries. Polyelectrolyte (polyethylenimine and polyacrylic acid) deposition was examined through Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and Atomic Force Microscopy (AFM), and tested through contact angle, water absorption and dissolution experiments. The hydroxyapatite nanocrystals were studied by ATR-FTIR, z-potential, AFM and Scanning Electron Microscopy (SEM), and characterized via contact angle and color alteration measurements. Our results show that the polyelectrolyte multilayer was stable in an aqueous environment with increased acid resistance (up to 46% decrease in mass weight loss when compared with untreated samples) and decreased water absorption (up to 39%). Color measurements of the outer hydroxyapatite layer showed a minimal color alteration for one type of the tested substrates showing low color difference values (ΔΕ* less then 5). The results suggest that the proposed method holds great potential for marble restoration as it attributes multi-functionality and is easy to apply.

In view of the photothermal effect of polydopamine (PDA) nanoparticles and their internal D-π-D structures during assembly, the two-photon excited properties of PDA were studied toward the biomedical application. Further, the PDA molecules were coordinated with Mn

and the assembled nanoparticles were covered by cancer cell membranes, the complex system could be used directly for the treatment of cancer with photothermal and chemodynamic therapy.

The two-photon excited PDA-Mn

nanoparticles were used for the photothermal therapy combined with chemodynamic therapy. The complexes were coated with cancer cell membranes in order to enhance the tumor homologous efficiency. Multi-modal bioimaging and anti-tumor detections were carried out both in vitro and in vivo.

PDA nanoparticles were demonstrated to have both good two-photon excited fluorescence and photothermal efficiency. The assembled nanoparticles modified with Mn

and cancer cell membranes have an obvious targeting and synergetic anti-cancer efficiency. The system creates a simple way for a precise operation with multi-modal imaging function.

PDA nanoparticles were demonstrated to have both good two-photon excited fluorescence and photothermal efficiency. The assembled nanoparticles modified with Mn2+ and cancer cell membranes have an obvious targeting and synergetic anti-cancer efficiency. The system creates a simple way for a precise operation with multi-modal imaging function.The novel catalyst with yolk-shell SiO2 NiMo/SiO2 spheres immobilized by zeolitic imidazolate framework (ZIF-67) materials has been successfully prepared. The experimental results indicated that the prepared catalyst exhibits superior performance for hydrogen generation from Formic acid (FA) dehydrogenation without any additives at low temperatures. The catalytic performances of the NixMo1-x/ZIF-67@SiO2 yolk-shell increased with Ni addition ratio increasing. In this research, Ni0.8Mo0.2/ZIF-67@SiO2 yolk-shell could provide the highest catalytic conversion efficiency. This is due to the uniform dispersion of fine metal nanoparticles (NPs) and synergistic effect between the NiMo NPs and ZIF-67@SiO2 supporter. The turn over frequency (TOF) value was approximately 13,183 h-1 at 25 °C through complete FA conversion. H2 selectivity was also approximately 100% with obvious CO-free hydrogen production at 25 °C. Meanwhile, the prepared NiMo/ZIF-67@SiO2 yolk-shell catalyst also shows superior catalytic stability with corresponding 99% activity after 10 cycles. In summary, the catalyst preparation and hydrogen generated from FA dehydrogenation obtained from this research could provide the important information for application in catalyst innovation and waste FA recycling and recovery in the future.Membrane structuration of Large Hybrid Unilamellar Polymer/Lipid Vesicle (LHUV) is an important parameter on the optimization of their properties and thus their valuation in various fields. However, this kind of information is hardly accessible. In this work, we will focus on the development of LHUV obtained from the self-assembly of diblock poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) of different molar masses combined with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 15% and 25% w/w content. The hybrid character of the resulting vesicles as well as their membrane structure are characterized by the mean of different techniques such as small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We show that hybrid vesicles with homogeneous membrane structure are obtained whatever the molar mass of the block copolymer (from 2500 to 4000 g/mol), with of a small number of tubular structures observed with the higher molar mass. We also demonstrate that the permeability of the LHUV, evaluated through controlled release experiments of fluorescein loaded in LHUV, is essentially controlled by the lipid/polymer composition.In this work, a 3D ternary core-shell Fe3O4@SiO2@MoS2 composite is synthesized by a hydrothermal technique and a modified Stöber method, where magnetic Fe3O4@SiO2 microsphere with the core of raspberry-like Fe3O4 nanoparticles is completely coated by the flower-like MoS2. Herein, the electromagnetic parameters of the composites are effectively tuned by the combination of magnetic Fe3O4 with dielectric SiO2 and MoS2. The obtained ternary composites exhibit remarkable enhancement of microwave absorption. The measurement results indicate that the minimum reflection loss (RL) of Fe3O4@SiO2@MoS2 composites reaches -62.98 dB at 1.83 mm with the effective absorption bandwidth (RL less then -10 dB) of 5.76 GHz (from 11.28 to 17.04 GHz) at 1.92 mm, much higher than those of pure Fe3O4 particles and Fe3O4@SiO2 microsphere. It is believed that the improved performances come from the specific structural design and the plentiful interfacial construction. Further, the synergistic effect of the dielectric and magnetic loss as well as the promoted impedance matching also help to enhance the microwave absorption of the composites. The microwave absorption behavior of the composites conforms to the quarter-wavelength cancellation theory. Our study offers an effective and promising strategy in the structural design and interfacial construction of the novel magnetic/dielectric composites with high-efficiency microwave absorption.

The droplet manipulation behavior is affected by chemical structural driving force (including the superposition of electric, magnetic, optical and thermal fields), which directly determine transportation velocity. A lot of research has focused on a single driving force that induces the directional transportation behavior, which affects its performance.

A simple method for preparing wettability gradient conical copper needles (WGCCN) combining structural gradient and chemical gradient was formulated. The effect of droplet volume and tilt angles on droplet transport velocity was systematically studied. The process of droplet transport was revealed through theoretical model and mechanical analysis. Finally, the application of WGCCN and its array model in fog collection were explored.

A continuous chemical gradient in the conical structure gradient induces the droplet directional transportation, and the transportation velocity depends on the droplet volume. In addition, under the cooperation effect of multiple driving force, the droplet can still be transported in a directional orientation even if it is tilted at a certain angle.

Autoři článku: Hickeyrussell8250 (Barrett Monahan)