Hewittnymand3219

Z Iurium Wiki

The influenza virus neuraminidase (NA) is becoming a focus for novel vaccine designs. However, the epitopes of human anti-NA antibodies have been poorly defined. Using a panel of 10 anti-N2 monoclonal antibodies (MAbs) that bind the H3N2 virus A/Switzerland/9715293/2013, we generated five escape mutant viruses. These viruses contained mutations K199E/T, E258K, A272D, and S331N. We found that mutations at K199 and E258 had the largest impact on MAb binding, NA inhibition and neutralization activity. In addition, a natural isolate from the 2017-2018 season was found to contain the E258K mutation and was resistant to numerous antibodies tested. The mutation S331N, was identified in virus passaged in the presence of antibody; however, it had little impact on MAb activity and greatly decreased viral fitness. This information aids in identifying novel human MAb epitopes on the N2 and helps with the detection of antigenically drifted NAs.IMPORTANCE The influenza virus neuraminidase is an emerging target for universal influenza virus vaccines. However, in contrast to influenza virus hemagglutinin, we know little about antibody epitopes and antigenic sites on the neuraminidase. Characterizing and defining these sites is aiding vaccine development and helping to understand antigenic drift of NA.Compared to other human coronaviruses, the genetic diversity and evolution of human coronavirus 229E (HCoV-229E) are relatively understudied. We report a fatal case of COVID-19 pneumonia coinfected with HCoV-229E in Hong Kong. Genome sequencing of SARS-CoV-2 and HCoV-229E from a nasopharyngeal sample of the patient showed that the SARS-CoV-2 strain HK13 was most closely related to SARS-CoV-2 type strain Wuhan-Hu-1 (99.99% nucleotide identity), compatible with his recent history of travel to Wuhan. The HCoV-229E strain HK20-42 was most closely related to HCoV-229E strain SC0865 from the United States (99.86% nucleotide identity). To investigate if it may represent a newly emerged HCoV-229E genotype in Hong Kong, we retrieved 41 archived respiratory samples that tested positive for HCoV-229E from 2004 to 2019. Pneumonia and exacerbations of chronic airway diseases were common among infected patients. Complete RdRp, S, and N gene sequencing of the 41 HCoV-229E strains revealed that our contemporary HCoV-229E stred that our SARS-CoV-2 strain is highly identical to the SARS-CoV-2 strain from Wuhan, compatible with the patient's recent travel history, whereas our HCoV-229E strain in this study is highly identical to a recent strain in the United States. We also retrieved 41 archived HCoV-229E strains from 2004 to 2019 in Hong Kong for sequence analysis. Pneumonia and exacerbations of chronic airway diseases were common diagnoses among the 41 patients. The results showed that HCoV-229E was evolving in chronological order. Two novel genogroups were identified in addition to the four preexisting HCoV-229E genogroups, with recent circulating strains belonging to novel genogroup 6. Molecular clock analysis dated bat-to-human and bat-to-camelid transmission to as early as 1884.Recently, we identified a Staphylococcus aureus sequence type 5 (ST5) clone in northern Australia with discrepant trimethoprim-sulfamethoxazole (SXT) susceptibility results. click here We aimed to identify isolates of this clone using Vitek 2 SXT resistance as a proxy and to compare its epidemiology with those of other circulating S. aureus strains. We collated Vitek 2 susceptibility data for S. aureus isolates collected through our laboratory and conducted a prospective, case-control study comparing clinical, microbiological, epidemiological, and genomic data for subsets of isolates reported as SXT resistant (cases) and SXT susceptible (controls) by Vitek 2. While overall SXT resistance rates remained relatively stable from 2011 to 2018 among 27,721 S. aureus isolates, non-multidrug-resistant methicillin-resistant S. aureus (MRSA) strains almost completely replaced multidrug-resistant MRSA strains as the predominant SXT-resistant MRSA phenotype. Demographic and clinical features of 51 case-control pairs were similar, bmic of community-associated skin and soft tissue infections has been driven by S. aureus strains with specific virulence factors and resistance to beta-lactam antibiotics. Recently, an S. aureus strain with discrepant antimicrobial susceptibility testing results has emerged in northern Australia. This ST5-MRSA-SCCmec IVo clone is reported as resistant to trimethoprim-sulfamethoxazole by Vitek 2 but susceptible by phenotypic methods. ST5-MRSA-SCCmec IVo is now the second most common community-associated MRSA clone in parts of Australia and causes a spectrum of clinical disease similar to that caused by the virulent ST93-MRSA lineage. Whole-genome sequence analysis demonstrates that ST5-MRSA-SCCmecIVo is causing a clonal outbreak across a large geographical region. Although phenotypic testing suggests in vitro susceptibility to trimethoprim-sulfamethoxazole, it is unclear at this stage whether the presence of dfrG within SCCmec IVo provides a selective advantage at the population level.Aspergillus fumigatus is the main cause of invasive aspergillosis (IA) with a high annual global incidence and mortality rate. Recent studies have indicated an increasing prevalence of azole-resistant A. fumigatus (ARAF) strains, with agricultural use of azole fungicides as a potential contributor. China has an extensive agricultural production system and uses a wide array of fungicides for crop production, including in modern growth facilities such as greenhouses. Soils in greenhouses are among the most intensively cultivated. However, little is known about the occurrence and distribution of ARAF in greenhouse soils. Here, we investigated genetic variation and triazole drug susceptibility in A. fumigatus from greenhouses around metropolitan Kunming in Yunnan, southwest China. Abundant allelic and genotypic variations were found among 233 A. fumigatus strains isolated from nine greenhouses in this region. Significantly, ∼80% of the strains were resistant to at least one medical triazole drug, with >30% showing cross-resistance to both itraconazole and voriconazole.

Autoři článku: Hewittnymand3219 (Ravn Ejlersen)