Hesssharp8399
We investigate the noise transfer mechanism from the light source intensity fluctuations to the acoustic signal in Fourier transform photoacoustic spectroscopy (FT-PAS). This noise coupling is expected to be reduced in FT-PAS compared with conventional Fourier transform spectroscopy, as only the specific spectral components that are absorbed by the probed sample contribute to the noise level. We employ an incoherent supercontinuum (SC) light source in our experiments and observe a linear relation between the sample gas concentration and the detected noise level, which significantly reduces the influence of the SC noise on the detection limit. Based on our experimental results, we derive a model for the noise level, which establishes the foundation for practical sensitive implementation of FT-PAS.A single-chip hybrid integrated silicon photonics transmitter based on passive alignment flip-chip bonding technology has been demonstrated. The transmitter is developed by the hybrid integration of a C-band slotted laser with 1 mm cavity length and a Mach-Zehnder modulator with 2 mm long phase shifter. A 3 dB bandwidth of the small signal response is 16.35 GHz at 5.99 VPP superimposed with a reverse bias voltage of 2.43 V. A 25 Gbps data transmission experiment of the hybrid integrated transmitter is performed at 25°C.Unlike the ideal circular whispering gallery cavities, those without mirror symmetry intrinsically support resonant modes exhibiting chirality which indicates an imbalance between clockwise and counterclockwise wave components. In extreme cases, nearly degenerate pairs of copropagating modes can be found around the chiral exceptional points (EPs) in parameter spaces. The chiral EPs have been studied in various schemes; however, most attention has been focused on the cases with piecewise constant or periodic refractive index profiles. In this Letter, we report the formation of a chiral EP in a gradient-index cavity designed by conformal transformation optics. Here, the mirror symmetry of the cavity is broken solely by its gradient index profile, and the parameter space is constructed with coordinate transformation parameters. We unveil the chirality, nonorthogonality, and complex-square-root topology near the chiral EP, which can be explained by the non-Hermitian model Hamiltonian.A novel, to the best of our knowledge, optical temperature measurement method is proposed, i.e., persistent luminescence intensity ratio (PLIR) thermometry. The PLIR thermometry relies on the micro-sized NaYF4Pr3+ material that can emit persistent luminescence (PersL) uninterruptedly after being charged by x ray irradiation. The 3P1→3H5 and 3P0→3H5 PersL transitions, locating separately at ∼ 522 and 538 nm, have been confirmed to follow the Boltzmann distribution. The emitting intensity ratio of this pair of PersL lines is thus found to be a good indicator of the variation of temperature. Our work is expected to enrich the optical temperature sensing family.A novel, to the best of our knowledge, design of plastic optical fiber (POF) balloon-based refractive index sensor for the detection of different concentrations of sodium chloride is proposed and experimentally investigated. The experimental characterization supports the finding that the transmission loss is sensitive to the external environment's targeted refractive index changes of the analyte. The proposed sensor achieves a maximum intensity-based sensitivity of 3105 RIU-1, resolution of 3.22 ×10-7, and the figure of merit (FOM) is 326 RIU-1 from 2 to 2.5 Mol/L of the analyte with the chosen refractive index changes at 680 nm for a diameter D = 0.1 cm of the POF balloon structure. Furthermore, a high linear performance of 0.9896 is achieved with good robustness against the fabrication imperfection. The ultra-sensitiveness to the refractive index with a simple demonstration of the POF balloon-based structure has potential applications in the chemical, biological, and food safety sensing fields.Under infrared ultrashort pulse laser stimulation, we investigate temperature-dependent second-harmonic generation (SHG) from nitrogen-vacancy (NV)-introduced bulk diamond. The SHG intensity decreases in the temperature range of 20-300°C, due to phase mismatching caused by refractive index modification. We discover that optical phonon scattering outperforms acoustic phonon scattering in NV diamond by fitting the temperature dependence of the SHG intensity using a model based on the bandgap change via the deformation potential interaction. This study presents an efficient and viable way for creating diamond-based nonlinear optical temperature sensing.Parametric instability (PI) is a phenomenon that results from resonant interactions between optical and acoustic modes of a laser cavity. selleckchem This is problematic in gravitational wave interferometers where the high intracavity power and low mechanical loss mirror suspension systems create an environment where three-mode PI will occur without intervention. We demonstrate a technique for real-time imaging of the amplitude and phase of the optical modes of PI yielding, to the best of the authors' knowledge, the first ever images of this phenomenon which could form part of active control strategies for future detectors.Both the intensity distribution and the degree of coherence between pairs of points along the propagation axis (z-coherence) are derived in closed form for a phenomenon of self-focusing produced by circularly coherent light. The first confirms results previously obtained numerically, while the second exhibits new complex features. The physical interpretation is obtained by a suitable pseudo-modal expansion that suggests an analogy with a simple two-mode structure.In this Letter, we demonstrate a high-speed broadband wavelength-swept femtosecond source (WFS) that leverages the soliton self-frequency shift (SSFS) and intensity-wavelength encoding technologies. The optical wavelength of the high-speed WFS can be continuously swept from 1055 nm to nearly 1300 nm at a sweeping rate of 100 kHz. This WFS is especially seeded by a femtosecond mode-locked all-fiber laser at 1055 nm that has a fundamental repetition rate of ∼1.0 GHz, a maximum output power of 7 W, and a compressed pulse width of 220 fs. It is anticipated that this high-speed broadband WFS can be a promising source for applications that require fast wavelength scanning and high-speed data processing.High-purity single-photon sources (SPS) that can operate at room temperature are highly desirable for a myriad of applications, including quantum photonics and quantum key distribution. In this work, we realize an ultra-bright solid-state SPS based on an atomic defect in hexagonal boron nitride (hBN) integrated with a solid immersion lens (SIL). The SIL increases the source efficiency by a factor of six, and the integrated system is capable of producing over ten million single photons per second at room temperature. Our results are promising for practical applications of SPS in quantum communication protocols.Extreme terahertz (THz) pulses can be generated via interaction of strong infrared ultrashort laser pulses with a suitable target. Inverting this scheme, we propose to use such THz pulses to control strong-laser-field-driven processes. In particular, we show that for THz-pulse-assisted strong-laser-field ionization the electron yield can be increased by one order of magnitude for some energies, and that the maximal emitted photoelectron energy can be a few times higher than that realized with the laser field alone. This can be achieved with the THz field intensity many orders of magnitude lower than that of the ionizing laser field. The only requirement is that the vector potential amplitude of the THz field, which governs the electron dynamics after the ionization by the laser field, be comparable with that of the used laser field. An important control parameter is the time delay between the THz pulse and the laser pulse. Strong-field ionization of Cs atoms is used for an illustration. The numerical results are obtained applying the improved strong-field approximation. For a physical explanation, we use quantum-orbit theory supported by the modified saddle-point method, as well as a classical model.Temperature characteristics of near-UV laser diodes (LDs) with a lasing wavelength of 384 nm are investigated. The characteristic temperature of threshold current (T0) of the UV LDs is low. Thus, the performance of the UV LDs under continuous wave (CW) operation is not as good as under pulsed operation especially at a high injection current. In addition, it is found that self-heating is a key factor for CW characteristics of the UV LDs, where suppression of the self-heating by using thick waveguide layers can increase the critical current of thermal rollover of the UV LD's operation. A high CW output power of 2.0 W is achieved for an InGaN near-UV LD with the n-side down on a sub-mount, whose threshold current density is 1.27 kA/cm2 and the highest wall plug efficiency (WPE) is approximately 15.9% at an injection current of 1.2 A.Ultraviolet (UV) technology plays an important role in the fields of sterilization, disinfection, and short-range wireless optical communications. In this Letter, a theoretical model to determine the UV radiation intensity (UVRI) on human skin is put forward based on the Monte Carlo method, where the UV wavelength ranges from 200 to 300 nm. Meanwhile, the UVRI evaluation algorithm is provided to reproduce the simulation results. Furthermore, the penetration depth of UV radiation in the human epidermis is investigated, which can be used to assess whether UV radiation causes damage to human health. Simulation results coincide with the existing experimental results that the 222-nm UV radiation is harmless to humans at the given dose of 1.7 mJ/cm2. This work provides theoretical guidelines for the power control of a UV system when humans are in the vicinity.We propose a new, to the best of our knowledge, method to radiate a high-efficiency and collimated terahertz (THz) pulse from a relativistic femtosecond laser and cone target. Particle-in-cell simulations demonstrate that a THz source of 40 mJ, pointing at an angle of ∼20 ∘, can be generated from a laser pulse of 1.9 J by using a cone target whose open angle is 10 ∘. The peak power of the THz pulse is 1011 W. This method, which manipulates the divergence angle and the energy conversion efficiency of the THz source, should promote THz science into the extra strong region with a compact laser system.We demonstrate a high-efficiency on-chip one-dimensional metalens for three-dimensional (3D) light focusing. The metalens consists of a one-dimensional dielectric nano-antenna array, which scatters the evanescent wave of a nano-waveguide into free space and focuses this scattered light into a 3D ring. The corresponding phase profile of the metalens is controlled by the relative locations of antennas in the array. Through antenna-waveguide distance optimization, the designed metalens only scatters 1.5% of propagation light into free space and 55% of the scattered energy is focused into the 3D ring. When we use the antennas with an optimized shape, 50.18% of the focused energy is concentrated in a circular arc of the ring, which subtends an angle of 48°. This high-efficiency on-chip one-dimensional metalens is promising for non-invasive optical signal detection in photonic integrated chips.