Hesselberggould3310

Z Iurium Wiki

End-stage renal disease patients undergoing maintenance hemodialysis (HD) are vulnerable to the protein energy wasting (PEW) syndrome. Identification and diagnosis of PEW relies on clinical processes of judgment dependent on fulfilling multiple criteria drawn from serum biochemistry, weight status, predictive muscle mass, dietary energy and protein intakes. Therefore, we sought to explore the biomarkers' signature with plasma metabolites of PEW by using 1H-nuclear magnetic resonance for an untargeted metabolomics approach in the HD population, to understand metabolic alteration of PEW. In this case-controlled study, a total of 53 patients undergoing chronic HD were identified having PEW based on established diagnostic criteria and were age- and sex-matched with non-PEW (n = 53) HD patients. Fasting predialysis plasma samples were analyzed. Partial least square discriminant analysis demonstrated a significant separation between groups for specific metabolic pattern alterations. Further quantitative analysis showed that the level of 3-hydroxybutyrate, acetate, arabinose, maltose, ribose, sucrose and tartrate were significantly increased whilst creatinine was significantly decreased (all p less then 0.05) in PEW subjects. Pathway analysis indicated that PEW-related metabolites reflected perturbations in fatty acid mechanism and induction of glyoxylate and dicarboxylate pathway attributed to gluconeogenesis. These results provide preliminary data in understanding metabolic alteration of PEW and corresponding abnormal metabolites that could potentially serve as biomarkers of PEW.

Body weight dissatisfaction is a hindrance to following a healthy lifestyle and it has been associated with weight concerns.

The aim of this study was to assess the association between the adherence to the Mediterranean lifestyle (diet and exercise) and the desired body weight loss in an adult Mediterranean population with overweight.

Cross-sectional analysis in 6355 participants (3268 men; 3087 women) with metabolic syndrome and BMI (Body mass index) between 27.0 and 40.0 kg/m

(55-75 years old) from the PREDIMED-Plus trial. Desired weight loss was the percentage of weight that participants wished to lose. It was categorized into four cut-offs of this percentage (Q1 <10%,

= 1495; Q2 10-15%,

= 1804; Q3 <15-20%,

= 1470; Q4 ≥20%,

= 1589). Diet was assessed using a validated food frequency questionnaire and a 17-item Mediterranean diet questionnaire. Physical activity was assessed by the validated Minnesota-REGICOR and the validated Spanish version of the Nurses' Health Study questionnaire.

Participants reporting higher percentages of desired weight loss (Q3 and Q4) were younger, had higher real and perceived BMI and were more likely to have abdominal obesity. Desired weight loss correlated inversely to physical activity (Q1 2106 MET min/week; Q4 1585 MET min/week.

< 0.001) and adherence to Mediterranean diet (Q1 8.7; Q4 8.3.

< 0.001).

In older Mediterranean individuals with weight excess, desired weight loss was inversely associated with Mediterranean lifestyle adherence. Deeply rooted aspects of the MedDiet remained similar across groups. Longitudinal research is advised to be able to establish causality.

In older Mediterranean individuals with weight excess, desired weight loss was inversely associated with Mediterranean lifestyle adherence. Deeply rooted aspects of the MedDiet remained similar across groups. Longitudinal research is advised to be able to establish causality.Allulose has been reported to serve as an anti-obesity and anti-diabetic food component; however, its molecular mechanism is not yet completely understood. TG100-115 concentration This study aims to elucidate the mechanisms of action for allulose in obesity-induced type 2 diabetes mellitus (T2DM), by analyzing the transcriptional and microbial populations of diet-induced obese mice. Thirty-six C57BL/6J mice were divided into four groups, fed with a normal diet (ND), a high-fat diet (HFD), a HFD supplemented with 5% erythritol, or a HFD supplemented with 5% allulose for 16 weeks, in a pair-fed manner. The allulose supplement reduced obesity and comorbidities, including inflammation and hepatic steatosis, and changed the microbial community in HFD-induced obese mice. Allulose attenuated obesity-mediated inflammation, by downregulating mRNA levels of inflammatory response components in the liver, leads to decreased plasma pro-inflammatory marker levels. Allulose suppressed glucose and lipid metabolism-regulating enzyme activities, ameliorating hepatic steatosis and improving dyslipidemia. Allulose improved fasting blood glucose (FBG), plasma glucose, homeostatic model assessment of insulin resistance (HOMA-IR), and the area under the curve (AUC) for the intraperitoneal glucose tolerance test (IPGTT), as well as hepatic lipid levels. Our findings suggested that allulose reduced HFD-induced obesity and improved T2DM by altering mRNA expression and the microbiome community.We recently showed that red blood cells (RBCs) from patients with type 2 diabetes mellitus (T2DM-RBCs) induce endothelial dysfunction through a mechanism involving arginase I and reactive oxygen species. Peroxynitrite is known to activate arginase in endothelial cells. Whether peroxynitrite regulates arginase activity in RBCs, and whether it is involved in the cross-talk between RBCs and the vasculature in T2DM, is unclear and elusive. The present study was designed to test the hypothesis that endothelial dysfunction induced by T2DM-RBCs is driven by peroxynitrite and upregulation of arginase. RBCs were isolated from patients with T2DM and healthy age matched controls. RBCs were co-incubated with aortae isolated from wild type rats for 18 h in the absence and presence of peroxynitrite scavenger FeTTPS. Evaluation of endothelial function in organ chambers by cumulative addition of acetylcholine as well as measurement of RBC and vessel arginase activity was performed. In another set of experiments, RBCs isolated from healthy subjects (Healthy RBCs) were incubated with the peroxynitrite donor SIN-1 with subsequent evaluation of endothelial function and arginase activity. T2DM-RBCs, but not Healthy RBCs, induced impairment in endothelial function, which was fully reversed by scavenging of RBC but not vascular peroxynitrite with FeTPPS. Arginase activity was up-regulated by the peroxynitrite donor SIN-1 in Healthy RBCs, an effect that was inhibited by FeTTPS. Healthy RBCs co-incubated with aortae in the presence of SIN-1 caused impairment of endothelial function, which was inhibited by FeTTPS or the arginase inhibitor ABH. T2DM-RBCs induced up-regulation of vascular arginase, an effect that was fully inhibited by FeTTPS. Collectively, our data indicate that RBCs impair endothelial function in T2DM via an effect that is driven by a peroxynitrite-mediated increase in arginase activity. This mechanism may be targeted in patients with T2DM for improvement in endothelial function.In this study we investigated the use of cancer cell protein expression of ABCG2 to predict efficacy of systemic first-line irinotecan containing therapy in patients with metastatic colorectal cancer (mCRC). From a Danish national cohort, we identified 119 mCRC patients treated with irinotecan containing therapy in first-line setting. Among these, 108 were eligible for analyses. Immunohistochemistry (IHC) analyses were performed on the primary tumor tissue in order to classify samples as high or low presence of ABCG2 protein. Data were then associated with patient outcome (objective response (OR), progression free survival (PFS) and overall survival (OS)). ABCG2 protein expression in the basolateral membrane was high (score 3+) in 33% of the patients. Exploratory analyses revealed a significant interaction between ABCG2 score, adjuvant treatment and OR (p = 0.041) in the 101 patients with evaluable disease. Patients with low ABCG2 (score 0-2) and no prior adjuvant therapy had a significantly higher odds ratio of 5.6 (Confidence Interval (CI) 1.68-18.7; p = 0.005) for obtaining OR. In contrast, no significant associations between ABCG2 expression and PFS or OS were found. These results suggest that measurement of the ABCG2 drug efflux pump might be used to select patients with mCRC for irinotecan treatment. However, additional studies are warranted before conclusions regarding a clinical use can be made. Moreover, patients with high ABCG2 immunoreactivity could be candidates for specific ABCG2 inhibition treatment in combination with irinotecan.A field trial experiment was conducted to investigate the degradation of metsulfuron-methyl at two application dosages, 15 g a.i/ha and 30 g a.i/ha, at an oil palm plantation. Soil samples were collected at ‒1, 0, 1, 3, 7, 14, and 21 days after treatment (DAT) at the following depths 0-10, 10-20, 20-30, 30-40, and 40-50 cm. The results showed rapid degradation of metsulfuron-methyl in the soil, with calculated half-life (t½) values ranging from 6.3 and 7.9 days. The rates of degradation of metsulfuron-methyl followed first-order reaction kinetics (R2 = 0.91-0.92). At the spray dosage of 15 g a.i/ha, metsulfuron-methyl residue was detected at up to 20-30 cm soil depth, at 3.56% to 1.78% at 3 and 7 DAT, respectively. Doubling the dosage to 30 g a.i/ha increased the metsulfuron-methyl residue in up to 30-40 cm soil depth at 3, 7, and 14 DAT, with concentrations ranging from 1.90% to 1.74%. These findings suggest that metsulfuron-methyl has a low impact on the accumulation of the residues in the soil at application dosages of 15 g a.i/ha and 30 g a.i/ha, due to rapid degradation, and the half-life was found to be 6.3 to 7.9 days.Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance.

Autoři článku: Hesselberggould3310 (Damm Fields)