Herskindmartinussen6828
In this article, we report a simple approach to stacking micro- and nanoparticle zones by electrokinetically migrating them through moderately confined channels of uniform cross-section. Experiments show the reported pre-concentration process to initiate at the tail end of the zone following its electrokinetic injection, with the stacked region migrating faster than the rest of the sample band. This effect causes the particles traveling in front to merge into the stacked region making it grow both in size and concentration. Because the stacked zone also gradually loses particles from its trailing edge, it eventually disintegrates upon running out of particles at its front end. Nevertheless, enhancements in peak height by over 100-fold were recorded using the reported approach for polystyrene beads with diameters comparable to the channel depth. This enhancement however, exhibited a temporal variation as the particle band migrated through the analysis column reaching a maximum value that depended on the particle diameter, particle concentration, channel depth, electric field strength, electroosmotic mobility, etc. Interestingly, the peak area recorded by the detector remained relatively constant during this particle migration period allowing reliable sample quantitation. Moreover, upon incubating antibody-coated particles against an antigen sample, the peak area for the particle zone was seen to scale linearly with the antigen concentration establishing the utility of the reported focusing phenomenon for chemical/biochemical analysis. The noted stacking technique was further applied to enabling UV absorbance detection of particle zones on microchips which then allowed us to determine the colloidal content in actual natural water samples. .In this study, boron-doped diamond (BDD) electrodes with varied B contents are prepared to determine the feasibility of the direct usage of BDD as an electrochemical biosensor without any modification. The electrochemical performance of the electrodes was investigated through the characterization of electrochemical impedance spectroscopy for potassium ferricyanide/potassium ferrocyanide (K3Fe(CN)6/K4Fe(CN)6) redox couples, as well as through qualitative and quantitative analysis of the two biomolecules dopamine (DA) and melatonin (MLT). The results show that the B content of BDD is the primary parameter for controlling the electrocatalytic current, that is, the response sensitivity. However, the abundant crystal planes and low background current are the key factors in improving the selectivity of the biomarkers to identify multiple analytes. Considering the catalytic current and its ability to distinguish the biomolecules, BDD with a B source carrier gas flow rate of 18 sccm is used as the sensing electrode for the simultaneous detection of DA and MLT. The response peak potential difference reaches 500 mV, and the linear concentration range for the two analytes is 0.4-600 μM, with detection limits of 0.1 μM for DA and 0.003 μM for MLT. These results match those observed for electrochemical sensors modified by various sensitive materials. BDD electrodes show good chemical resistance, good stability, and no pollution and are suitable for long-term usage as biomarker sensors.Alkaline phosphatase (ALP), which converts the phosphate group (-PO4) in the substrate to the hydroxyl group (-OH), is a useful tool in the biological analysis, a good indicator of dissolved inorganic phosphorus levels and an important biomarker for several diseases. In conventional designs for ALP detection, both the interferent with a -PO4 and the target with a -OH will go into the sensing path and give out the undesired background and the desired signal respectively. This limited the sensitivity of the method and required the complicated design to achieve a satisfying limit of detection (LOD) of ALP. Here, we provided a new sensing strategy for ALP detection design. We designed a path-choice-based biosensor with two DNA tracks in which ALP works as the switch to guide the reaction path of lambda exonuclease (λ exo). The path-choice character enlarged the difference between signal and background by separating the interferent removing path and the target sensing path. The substrate preference of ALP and λ exo was studied to optimize the structure of DNA tracks. The path-choice-based biosensor achieved simple, fast (30 min), sensitive (LOD 0.014 U L-1) and selective detection of the activity of ALP. The method has been applied to detect the activity of ALP in cell lysates, which shows the potential application in ALP-related biological research.The detection of a small number of exosomes provides the possibility for early cancer diagnosis and prognosis. Here, a multi-signal amplified electrochemical sensing platform was explored for the ultrasensitive detection of tumor exosomes relying on catalytic hairpin assembly-triggered DNA walker, entropy beacon-based DNA assembly and Ag@C core-shell nanocomposites. In this work, the utilization of Ag@C nanocomposites as electrode interface effectively enhanced functional active sites and electron transfer capability. By designing a target-assisted entropy beacon-based DNA assembly, single exosome initiated the release of multiple special DNA sequences, which could be separated conveniently by magnet and then hybridize with the blocking DNA to liberate swing arm. DNA walker was activated with the assistance of catalytic hairpin assembly, introducing extensive electroactive methylene blue (MB) to electrode surface. Thus, the detection of exosomes was transferred into the measurement of the MB current, with a good liner range from 100 to 75 000 particles/μL. click here Furthermore, this constructed sensing system displayed acceptable reproducibility, long-term stability, favorable selectivity, and highlighting application potential in real samples.This study reports on the development of a novel instrument for capillary electrophoresis (CE) coupled with laser induced fluorescence (LIF) detection that is inspired by the Lego-toy concept. The Lego CE-LIF design is an evolution of purpose-made CE instrumentation, allowing the users to construct their own analytical device with a high degree of standardization (i.e. a "standard" setup) without requirement of mechanical and electronic workshop facilities. To allow instrument reproduction outside the original fabrication laboratory, which is not trivial for in-house-built CE systems, the new design is based on unprecedent 'plugging' hyphenation of various off-the-shelf parts available for microfluidics, optics and electrophoresis. To render the operation with Lego CE-LIF optimal, we developed a new background electrolyte (BGE), using for the first time extremely high concentrations of zwitterionic and large weakly charged species for much improvement of detection sensitivity. The Lego CE-LIF was demonstrated for separation and detection of oligosaccharides labelled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS).