Hermanmoon1787
This finding is consistent with the hypothesis that selection on males for early-life reproduction compromises investment in somatic maintenance, which has delayed consequences for health later in life, in this case reflected in viral infection and/or shedding. Faecal viromes are therefore useful for studying processes related to the divergent reproductive strategies of males and females, ageing, and sex differences in longevity. This article is part of the theme issue 'Evolution of the primate ageing process'.Humans have the longest post-reproductive lifespans and lowest rates of actuarial ageing among primates. Understanding the links between slow actuarial ageing and physiological change is critical for improving the human 'healthspan'. Physiological dysregulation may be a key feature of ageing in industrialized populations with high burdens of chronic 'diseases of civilization', but little is known about age trajectories of physiological condition in subsistence populations with limited access to public health infrastructure. To better characterize human physiological dysregulation, we examined age trajectories of 40 biomarkers spanning the immune (n = 13 biomarkers), cardiometabolic (n = 14), musculoskeletal (n = 6) and other (n = 7) systems among Tsimane forager-horticulturalists of the Bolivian Amazon using mixed cross-sectional and longitudinal data (n = 22 115 observations). We characterized age-related changes using a multi-system statistical index of physiological dysregulation (Mahalanobis distance; Dm) that increases with age in both humans and other primates. Although individual biomarkers showed varied age profiles, we found a robust increase in age-related dysregulation for Tsimane (β = 0.17-0.18) that was marginally faster than that reported for an industrialized Western sample (β = 0.14-0.16), but slower than that of other non-human primates. We found minimal sex differences in the pace or average level of dysregulation for Tsimane. Our findings highlight some conserved patterns of physiological dysregulation in humans, consistent with the notion that somatic ageing exhibits species-typical patterns, despite cross-cultural variation in environmental exposures, lifestyles and mortality. This article is part of the theme issue 'Evolution of the primate ageing process'.People who are more socially integrated or have higher socio-economic status live longer. Recent studies in non-human primates show striking convergences with this human pattern female primates with more social partners, stronger social bonds or higher dominance rank all lead longer lives. However, it remains unclear whether social environments also predict survival in male non-human primates, as it does in men. This gap persists because, in most primates, males disperse among social groups, resulting in many males who disappear with unknown fate and have unknown dates of birth. We present a Bayesian model to estimate the effects of time-varying social covariates on age-specific adult mortality in both sexes of wild baboons. We compare how the survival trajectories of both sexes are linked to social bonds and social status over the life. We find that, parallel to females, male baboons who are more strongly bonded to females have longer lifespans. However, males with higher dominance rank for their age appear to have shorter lifespans. This finding brings new understanding to the adaptive significance of heterosexual social bonds for male baboons in addition to protecting the male's offspring from infanticide, these bonds may have direct benefits to males themselves. DNA Repair inhibitor is part of the theme issue 'Evolution of the primate ageing process'.Methylation levels have been shown to change with age at sites across the human genome. #link# Change at some of these sites is so consistent across individuals that it can be used as an 'epigenetic clock' to predict an individual's chronological age to within a few years. Here, we examined how the pattern of epigenetic ageing in chimpanzees compares with humans. We profiled genome-wide blood methylation levels by microarray for 113 samples from 83 chimpanzees aged 1-58 years (26 chimpanzees were sampled at multiple ages during their lifespan). Many sites (greater than 65 000) showed significant change in methylation with age and around one-third (32%) of these overlap with sites showing significant age-related change in humans. At over 80% of sites showing age-related change in both species, chimpanzees displayed a significantly faster rate of age-related change in methylation than humans. We also built a chimpanzee-specific epigenetic clock that predicted age in our test dataset with a median absolute deviation from known age of only 2.4 years. However, our chimpanzee clock showed little overlap with previously constructed human clocks. Methylation at CpGs comprising our chimpanzee clock showed moderate heritability. Although the use of a human microarray for profiling chimpanzees biases our results towards regions with shared genomic sequence between the species, nevertheless, our results indicate that there is considerable conservation in epigenetic ageing between chimpanzees and humans, but also substantial divergence in both rate and genomic distribution of ageing-associated sites. This article is part of the theme issue 'Evolution of the primate ageing process'.As the world confronts the health challenges of an ageing population, there has been dramatically increased interest in the science of ageing. This research has overwhelmingly focused on age-related disease, particularly in industrialized human populations and short-lived laboratory animal models. However, it has become clear that humans and long-lived primates age differently than many typical model organisms, and that many of the diseases causing death and disability in the developed world are greatly exacerbated by modern lifestyles. As such, research on how the human ageing process evolved is vital to understanding the origins of prolonged human lifespan and factors increasing vulnerability to degenerative disease. In this issue, we highlight emerging comparative research on primates, highlighting the physical, physiological, behavioural and cognitive processes of ageing. This work comprises data and theory on non-human primates, as well as under-represented data on humans living in small-scale societies, which help elucidate how environment shapes senescence.