Hermandrake6244
tatus.Two heterometal-oxo Ag2Ti10 (PTC-221) and Ag4Ti8 (PTC-222) clusters were successfully synthesized and characterized, with the doped Ag atoms surrounded by the Ti-O core and exposed to the cluster surface, respectively. Density functional theory (DFT) calculations were carried out to study the electronic structures of PTC-221 and PTC-222, including the frontier orbitals and partial density of states (PDOS). The solid-state UV-vis absorption spectra of PTC-221 and PTC-222 were also recorded. Interestingly, PTC-221 shows intense visible light absorption with an absorption edge around 590 nm and exhibits good photocurrent response in the visible region.This manuscript provides an in situ synthesis method for the self-assembly of a heterostructured NiO-MnCo2O4 micro-nano composite with a poriferous shell. The special shell structure effectively alleviated the volume variation and subsequently enhanced the diffusivity of ions in the cycling process for cyclic stability. The inner spaces among the stacked nanoparticles are conducive to electrolyte infiltration and the transfer of ion/electrons with low concentration polarization. Consequently, the optimized NiO-MnCo2O4 exhibited excellent cycle stability (718.8 mA h g-1 after 1000 cycles at 2 A g-1) and highly recoverable rate performance. On gaining insight into the heterointerface structure, it was indicated that the optimal interfacial electronic environment in the presence of the nickel content plays a key role in creating lattice defects and active sites to increase the ion diffusion rate, electron conductivity and unlock extra pseudocapacitance for ion storage. The excellent capabilities from the optimal heterointerface environment will promote the development of high-energy applications of LIBs.Correction for 'An antibody-supermolecule conjugate for tumor-specific targeting of tumoricidal methylated β-cyclodextrin-threaded polyrotaxanes' by Kei Nishida et al., J. Mater. Chem. B, 2020, DOI 10.1039/d0tb00575d.Tumor masses are three-dimensional (3D). The abnormal physiology of solid tumors is a great barrier to anticancer drug delivery, and the development of effective therapeutic strategies for cancer treatment remains highly challenging. In this study, we have rationally designed IR780 and glucose oxidase (GOx) based poly lactic-co-glycolic acid (PLGA) nanospheres, which can not only selectively accumulate in mitochondria, but also penetrate into 3D tumors deeply at the same time, achieving synergistic treatment of phototherapy and enzyme (GOx)-induced starvation therapy under dual-imaging guidance/monitoring. The lipophilic cationic properties of IR780 enable the nanospheres to penetrate into deep tumor tissues, which has been demonstrated by in vitro 3D tumor modeling and in vivo tumor reconstruction. Meanwhile, the inherent structure of IR780 endows the nanospheres with mitochondrial targeting capability. As mitochondria are susceptible to hyperpyrexia and reactive oxygen species (ROS), mitochondria-targeted phototherapy shows more efficient therapeutic performance. Furthermore, the starvation effect of GOx can cut off the nutrition supply to tumor cells, enhancing the energy metabolism disorder of tumor cells after mitochondrial damage induced by phototherapy, further increasing the damage to tumor cells. In addition, the therapeutic process can be guided/monitored by photoacoustic (PA) and fluorescence (FL) dual imaging. read more Due to the incorporation of multiple modalities, these nanospheres are promising for cancer theranostics.4-Fluorothreonine (4-FT) is the only naturally occurring fluorinated amino acid antibiotic. Although two conserved proteins in the 4-FT pathway have been found to be involved in self-detoxification mechanisms, the 4-FT-producing strains may also require an alternative pathway to degrade the intracellular 4-FT. In this study, we examined the possible degradation role of three enzymes involved in threonine metabolite pathways toward 4-FT as a possible degradation route to avoid in vivo 4-FT accumulation. Among these three enzymes, threonine deaminase was found to catalyse a defluorination reaction to generate 4-hydroxy-α-ketobutyrate, which is supposed to be further metabolised by an aldolase that likely is a unique occurrence in the 4-FT-producing strains. Our finding may constitute a 4-FT degradation pathway as a complementary resistance mechanism.The asymmetric synthesis of the 3-allyl-3-hydroxyoxindole skeleton was accomplished in yields up to 99% via a metal-free and enantioselective allylation of isatins (90-96% ee) using BINOL derivatives as catalysts and an optimized allylboronate. This methodology was applied at a gram-scale to the synthesis of the natural product (R)-chimonamidine.Lack of stiffness often limits thin shape-shifting structures to small scales. The large in-plane transformations required to distort the metrics are indeed commonly achieved by using soft hydrogels or elastomers. We introduce here a versatile single-step method to shape-program stiff inflated structures, opening the door for numerous large scale applications, ranging from space deployable structures to emergency shelters. This technique relies on channel patterns obtained by heat-sealing superimposed flat quasi-inextensible fabric sheets. Inflating channels induces an anisotropic in-plane contraction and thus a possible change of Gaussian curvature. Seam lines, which act as a director field for the in-plane deformation, encode the shape of the deployed structure. We present three patterning methods to quantitatively and analytically program shells with non-Euclidean metrics. In addition to shapes, we describe with scaling laws the mechanical properties of the inflated structures. Large deployed structures can resist their weight, substantially broadening the palette of applications.Two-dimensional (2D) ferromagnetism has attracted intense attention as it provides a platform for the investigation of fundamental physics and the emerged devices. Recently, the discovery of intrinsic 2D ferromagnet has enabled researchers to fabricate ultrathin devices, which can be controlled by external fields. Nevertheless, 2D ferromagnetic materials are mostly obtained by mechanical exfoliation methods with uncontrollable size and thickness, which make the device fabrication processes time-consuming and difficult to expand in industries. Therefore, the development of a controllable fabrication process for the synthesis of 2D intrinsic magnetic materials is necessary. In this study, a new 2D ferromagnet, chromium tellurium (CrTe), was successfully synthesized by the chemical vapor deposition (CVD) method, and the magnetism was studied by the magneto-optical Kerr effect (MOKE) technique. The results demonstrated that CrTe flakes exhibit hard magnetism with strong perpendicular anisotropy. As the thickness varies from 45 nm to 11 nm, the hard magnetism sustains quite well, with the Curie temperature TC decreasing from 205 K to 140 K.