Hensonnordentoft9697

Z Iurium Wiki

Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography-mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.It was recognized over 30 years ago that the polyfunctional cytokine interleukin-6 (IL-6) was an almost invariant presence at the host-tumor interface. The IL-6 in the tumor microenvironment was produced either by the cancer cell or by host stromal cells, or by tumor-infiltrating immune cells, or all of them. IL-6 effects in this context included local changes in tumor cell-cell and cell-substrate adhesion, enhanced motility, epithelial to mesenchymal transformation (EMT), and changes in cell proliferation rates in both solid tumors as well as hematologic dyscrasias. Locally produced IL-6 enhanced cancer-targeting functions of tumor-infiltrating macrophages and immune cells. Additionally, the sex-biased phenotype of certain cancers [e.g., hepatocellular carcinoma (HCC) which is 3-5-fold more common in men] was related to the inhibition of macrophage-derived IL-6 production by estradiol-17β (E2). In many circumstances, locally produced IL-6 reached the peripheral circulation and elicited systemic effects such as cachexia and paraneoplastic syndrome (including fever, increased erythrocyte sedimentation rate, increased levels of C-reactive protein in serum, hypoalbuminemia). This review highlights the EMT produced by IL-6 in cancer cells, as well as mechanisms underlying sex bias in HCC, enhanced IL-6 expression in cancer cells resulting from mutations in p53, consequent alterations in STAT3 transcriptional signaling, and the newer understanding of STAT3 nuclear bodies in the cancer cell as phase-separated biomolecular condensates and membraneless organelles (MLOs). Moreover, the perplexing issue of discrepant measurements of IL-6 in human circulation using different assays, especially in patients undergoing immunotherapy, is discussed. Additionally, the paradoxical chaperone (enhancing) effect of anti-IL-6 "neutralizing" antibodies on IL-6 in vivo and consequent limitations of immunotherapy using anti-IL-6 mAb is considered.

We previously showed that caspase-1 and -11, which are activated by inflammasomes, mediate recovery from muscle ischemia in mice. We hypothesized that similar to murine models, inflammatory caspases modulate myogenicity and inflammation in ischemic muscle disease.

Caspase activity was measured in ischemic and perfused human myoblasts in response to the NLRP3 and AIM2 inflammasome agonists (nigericin and poly(dAdT), respectively) with and without specific caspase-1 or pan-caspase inhibition. mRNA levels of myogenic markers and caspase-1 were assessed, and protein levels of caspases-1, -4, -5, and -3 were measured by Western blot.

When compared to perfused cells, ischemic myoblasts demonstrated attenuated MyoD and myogenin and elevated caspase-1 mRNA. Ischemic myoblasts also had significantly higher enzymatic caspase activity with poly(dAdT) (

< 0.001), but not nigericin stimulation. Selleckchem Zoligratinib Inhibition of caspase activity including caspase-4/-5, but not caspase-1, blocked activation effects of poly(dAdT). Ischemic myoblasts had elevated cleaved caspase-5. Inhibition of caspase activity deterred differentiation in ischemic but not perfused myoblasts and reduced the release of HMGB1 from both groups.

Inflammatory caspases can be activated in ischemic myoblasts by AIM2 and influence ischemic myoblast differentiation and release of pro-angiogenic HMGB1. AIM2 inflammasome involvement suggests a role as a DNA damage sensor, and our data suggest that caspase-5 rather than caspase-1 may mediate the downstream mediator of this pathway.

Inflammatory caspases can be activated in ischemic myoblasts by AIM2 and influence ischemic myoblast differentiation and release of pro-angiogenic HMGB1. AIM2 inflammasome involvement suggests a role as a DNA damage sensor, and our data suggest that caspase-5 rather than caspase-1 may mediate the downstream mediator of this pathway.Recent studies have disclosed transcription factor MYB as a potential drug target for malignancies that are dependent on deregulated MYB function, including acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often regarded as undruggable, successful targeting of MYB by low-molecular-weight compounds has recently been demonstrated. In an attempt to repurpose known drugs as novel MYB-inhibitory agents, we have screened libraries of approved drugs and drug-like compounds for molecules with MYB-inhibitory potential. Here, we present initial evidence for the MYB-inhibitory activity of the protein kinase inhibitors bosutinib, PD180970 and PD161570, that we identified in a recent screen. We show that these compounds interfere with the activity of the MYB transactivation domain, apparently by disturbing the ability of MYB to cooperate with the coactivator p300. We show that treatment of the AML cell line HL60 with these compounds triggers the up-regulation of the myeloid differentiation marker CD11b and induces cell death. Importantly, we show that these effects are significantly dampened by forced expression of an activated version of MYB, confirming that the ability to suppress MYB function is a relevant activity of these compounds. Overall, our work identifies several protein kinase inhibitors as novel MYB-inhibitory agents and suggests that the inhibition of MYB function may play a role in their pharmacological impact on leukemic cells.Chemerin (CHEM) is a hormone mainly expressed in adipocytes involved in the regulation of energy homeostasis and inflammatory response. CHEM expression has been demonstrated in the structures of the porcine hypothalamic-pituitary-gonadal axis, as well as in the uterus, trophoblasts and conceptuses of pigs. In this study, we performed high-throughput proteomic analyses (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the influence of CHEM (400 ng/mL) on differentially regulated proteins (DRPs) in the porcine endometrial tissue explants during implantation (15 to 16 days of gestation). Among all 352 DRPs, 164 were up-regulated and 188 were down-regulated in CHEM-treated group. DRPs were assigned to 47 gene ontology (GO) terms (p-adjusted < 0.05). Validation of four DRPs (IFIT5, TGFβ1, ACO1 and PGRMC1) by Western blot analysis confirmed the veracity and accuracy of the LC-MS/MS method used in the present study. We suggest that CHEM, by modulating various protein expressions, takes part in the endometrial cell proliferation, migration and invasion at the time of implantation. It also regulates the endometrial immune response, sensitivity to P4 and the formation of new blood vessels. Additionally, CHEM appears to be an important factor involved in endothelial cell dysfunction during the pathogenesis of preeclampsia. The identification of a large number of DRPs under the influence of CHEM provides a valuable resource for understanding the molecular mechanisms of this hormone action during implantation, which is a prerequisite for better control of pig reproduction.Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality worldwide. Non-specific symptoms, lack of biomarkers in the early stages, and drug resistance due to the presence of a dense fibrous stroma all contribute to the poor outcome of this disease. The extracellular matrix secreted by activated fibroblasts contributes to the desmoplastic tumor microenvironment formation. Given the importance of fibroblast activation in PDAC pathology, it is critical to recognize the mechanisms involved in the transformation of normal fibroblasts in the early stages of tumorigenesis. To this aim, we first identified the proteins released from the pancreatic cancer cell line MIA-PaCa2 by proteomic analysis of their conditioned medium (CM). Second, normal fibroblasts were treated with MIA-PaCa2 CM for 24 h and 48 h and their proteostatic changes were detected by proteomics. Pathway analysis indicated that treated fibroblasts undergo changes compatible with the activation of migration, vasculogenesis, cellular homeostasis and metabolism of amino acids and reduced apoptosis. These biological activities are possibly regulated by ITGB3 and TGFB1/2 followed by SMAD3, STAT3 and BAG3 activation. In conclusion, this study sheds light on the crosstalk between PDAC cells and associated fibroblasts. Data are available via ProteomeXchange with identifier PXD030974.The cGAS STING pathway has received much attention in recent years, and it has been recognized as an important component of the innate immune response. Since the discovery of STING and that of cGAS, many observations based on preclinical models suggest that the faulty regulation of this pathway is involved in many type I IFN autoinflammatory disorders. Evidence has been accumulating that cGAS/STING might play an important role in pathologies beyond classical immune diseases, as in, for example, cardiac failure. Human genetic mutations that result in the activation of STING or that affect the activity of cGAS have been demonstrated as the drivers of rare interferonopathies affecting young children and young adults. Nevertheless, no data is available in the clinics demonstrating the therapeutic benefit in modulating the cGAS/STING pathway. This is due to the lack of STING/cGAS-specific low molecular weight modulators that would be qualified for clinical exploration. The early hopes to learn from STING agonists, which have reached the clinics in recent years for selected oncology indications, have not yet materialized since the initial trials are progressing very slowly.

Autoři článku: Hensonnordentoft9697 (Mead Quinn)