Hennebergcoyne6169
Marine mammals found at the top of the trophic pyramid are excellent bioindicators of pollutants in the marine environment, the concentrations of which increase along with the trophic level of the organism. As these animals are usually protected species, their contamination has to be assessed non-invasively by analysing excrement and epidermal structures such as fur or claws. The present study involved testing the excrement and fur of the grey seal (Halichoerus grypus) from the Southern Baltic coast and the Southern elephant seal (Mirounga leonine) from Admiralty Bay, along with fish muscle (food) and the lithological background of both areas, for the presence of rare earth elements (REE). The soil on the Baltic coast is characterized by the predomination of light rare earth elements (LREE) yttrium, lanthanum and cerium (∑REE = 7.86 mg·kg-1 dw). In the soil and bedrock of Admiralty Bay all REEs were found except for terbium, thulium and lutetium (∑REE = 96.1 mg·kg-1 dw). The REE levels found in the muscles of Baltic herring (∑REE = 0.057 mg·kg-1 ww) were lower than those in the muscles of marbled rockcod (∑REE = 0.540 mg·kg-1 ww). The situation was analogous in the mammals, with the REE concentrations in grey seal fur (∑REE = 0.489 mg·kg-1 dw) and excrement (∑REE = 0.676 mg·kg-1 dw) being lower than those found in the fur (∑REE = 10.1 mg·kg-1 dw) and excrement (∑REE = 83.6 mg·kg-1 dw) of the elephant seal. The LREE/HREE partition coefficients in the grey seal excrement (3.37) and its fur (4.00), but also in the faeces of the elephant seal (2.63) and its fur (2.65), indicate that in each species the process of elimination from the body occurs in similar proportions.Climate change due to greenhouse gas (GHG) emissions is one of the global environmental matters of the 21st century. Biochar (BC) amendments have been proposed as a potential solution for improving soil quality and to mitigate GHGs emissions. Therefore, we evaluated the influence of different BCs on soil CO2 and N2O emissions in an outdoor pot experiment. The soil was mixed with three different types of BCs; bamboo, hardwood, and rice straw BCs as BB, BH, and BR, respectively, and control as B0 with four levels (0, 5, 20, and 80 g kg-1 of soil). Gas samples were collected on a bi-monthly basis for six months. A polyvinyl chloride (PVC) static chamber was placed on each replicate to collect the gas samples at 15, 30, 45, and 60 min, respectively. Compared to B0, the lowest cumulative N2O emissions were observed in BH80 (11%) followed by BH20, BH5, and BR80. However, for cumulative CO2 emissions, B0 and BC treatments showed no significant differences except for BB80 (>11%) and BB5 ( less then 2%). BC type and level both had a significant (P less then 0.001) impact on the cumulative N2O emissions with a significant interaction (P less then 0.001). However, cumulative CO2 emissions were unaffected by BC type but BC level showed a significant influence on cumulative CO2 emissions (P less then 0.05) and there was a significant (P less then 0.001) interaction between the BC type and level on cumulative CO2 emissions. Overall, higher doses of BR and BB showed a pronounced effect on soil pH over BH. The soil pH and moisture showed a negative correlation with N2O emissions whereas soil temperature showed a positive correlation with the cumulative fluxes of N2O. Our results demonstrate that BC incorporation to soil may help to mitigate GHGs emissions but its influence may vary with BC type and level under different conditions and soil type.This study accurately assessed microcystin-LR (MCLR)-trapping capabilities of diverse biochars based on sorption and sequential desorption (SDE), and elucidated MCLR sorption-desorption mechanisms from novel views of sorption domains and site energy distribution along sorption-SDE process. Results showed that maize straw biochar (MSB) and chicken manure biochar (CMB) excelled in trapping MCLR (91.0%-97.4% and 85.7%-96.4%, respectively, at 60-600 μg/L of initial MCLR amount), followed by their respective HCl-treated ones (HCMB, HSMB), while HCl-treated bamboo biochar and pine sawdust biochar poorly trapped MCLR (48.9%-77.8% for HBB, 22.6%-67.2% for HPSB). Non-partition sorption domains (NPSD) contributed more than partition sorption domain (PSD) to MCLR sorption by each biochar. Higher NPSD contribution to MCLR sorption in CMBs and MSBs than other biochars resulted from their higher pHPZC and mesoporosity, which provided stronger electrostatic and pore-filling interaction for MCLR. Desorption hysteresis was weaken with rising aqueous MCLR amount for most biochars. Along SDE process, remaining MCLR in PSD of MSBs, HPSB and HBB could transfer to NPSD, thus desorption ratio continuously decreased with increasing desorption cycle. Differently, remaining MCLR in NPSD of CMBs converted into PSD during 1st-3rd desorption, causing fluctuated desorption ratio without obvious decrease as desorption cycle increased. These implied that MCLR in PSD was more easily desorbed than NPSD for each biochar. Site energy distribution dynamics supported the results of PSD and NPSD contribution changes along SDE. This study was greatly implicated in cost-efficient emergent MCLR-pollution remediation and deeply understanding MCLR sorption-desorption mechanisms of diverse biochars.We compared long-term (1977 to 2014) trends in concentrations of PFAS in eggs of the marine sentinel species, the Northern gannet (Morus bassanus), from the Irish Sea (Ailsa Craig) and the North Sea (Bass Rock). Concentrations of eight perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonates (PFSAs) were determined and we report the first dataset on PFAS in UK seabirds before and after the PFOS ban. There were no significant differences in ∑PFAS or ∑PFSAs between both colonies. The ∑PFSAs dominated the PFAS profile (>80%); PFOS accounted for the majority of the PFSAs (98-99%). In contrast, ∑PFCAs concentrations were slightly but significantly higher in eggs from Ailsa Craig than in those from Bass Rock. The most abundant PFCAs were perfluorotridecanoate (PFTriDA) and perfluoroundecanoate (PFUnA) which, together with PFOA, comprised around 90% of the ∑PFCAs. The ∑PFSAs and ∑PFCAs had very different temporal trends. ∑PFSAs concentrations in eggs from both colonies increased significantly in the earlier part of the study but later declined significantly, demonstrating the effectiveness of the phasing out of PFOS production in the 2000s. In contrast, ∑PFCAs concentrations in eggs were constant and low in the 1970s and 1980s, suggesting minimal environmental contamination, but residues subsequently increased significantly in both colonies until the end of the study. This increase appeared driven by rises in long chain compounds, namely the odd chain numbered PFTriDA and PFUnA. PFOA, had a very different temporal trend from the other dominant acids, with an earlier rise in concentrations followed by a decline in the last 15 years in Ailsa Craig; later temporal trends in Bass Rock eggs were unclear. Although eggs from both colonies contained relatively low concentrations of PFAS, the majority had PFOS residues that exceeded a suggested Predicted No Effect Concentration and ~ 10% of the eggs exceeded a suggested Lowest-Observable-Adverse-Effect.Antibiotic resistance and rising CO2 levels are considered among the most significant challenges we will face in terms of global development over the following decades. However, the impact of elevated CO2 on soil antibiotic resistance has rarely been investigated. We used a free-air CO2 enrichment system to investigate the potential risks posed by applying mineral and organic fertilizers to paddy soil at current CO2 concentration (370 ppm) and future elevated CO2 (eCO2, 570 ppm predicted for 2100). Organic fertilizer substitution (substituting the mineral fertilizer by 50% N) alone increased the plant uptake and soil residue of sulfamethazine, and enriched sulfonamide resistance genes (sul1, sul2), tetracycline resistance genes (tetG, tetM) and class 1 integron (intl1). But it decreased the rice grain yield (by 7.6%). Comparatively, eCO2 decreased the sul2, tetG and intl1 gene abundances by organic fertilizer substitution, and meanwhile increased grain yield (by 8.4%). Proteobacteria and Nitrospirae were potential hosts of antibiotic resistance genes (ARGs). Horizontal gene transfer via intl1 may play an important role in ARGs spread under eCO2. Results indicated that future elevated CO2 concentration could modify the effects of organic fertilizer substitution on rice yield and soil ARGs, with unknown implications for future medicine and human health.Plutonium (Pu) has been released in Japan by two very different types of nuclear events - the 2011 Fukushima accident and the 1945 detonation of a Pu-core weapon at Nagasaki. Here we report on the use of Accelerator Mass Spectrometry (AMS) methods to distinguish the FDNPP-accident and Nagasaki-detonation Pu from worldwide fallout in soils and biota. The FDNPP-Pu was distinct in local environmental samples through the use of highly sensitive 241Pu/239Pu atom ratios. In contrast, other typically-used Pu measures (240Pu/239Pu atom ratios, activity concentrations) did not distinguish the FDNPP Pu from background in most 2016 environmental samples. Results indicate the accident contributed new Pu of ~0.4%-2% in the 0-5 cm soils, ~0.3%-3% in earthworms, and ~1%-10% in wild boar near the FDNPP. The uptake of Pu in the boar appears to be relatively uninfluenced by the glassy particle forms of fallout near the FDNPP, whereas the 134,137Cs uptake appears to be highly influenced. Near Nagasaki, the lasting legacy of Pu is greater with high percentages of Pu sourced from the 1945 detonation (~93% soils, ~88% earthworm, ~96% boar). The Pu at Nagasaki contrasts with that from the FDNPP in having proportionately higher 239Pu and was distinguished by both 240Pu/239Pu and 241Pu/239Pu atom ratios. However, compared with the contamination near the Chernobyl accident site, the Pu amounts at all study sites in Japan are orders of magnitude lower. The dose rates from Pu to organisms in the FDNPP and Nagasaki areas, as well as to human consumers of wild boar meat, have been only slightly elevated above background. Leucenol Our data demonstrate the greater sensitivity of 241Pu/239Pu atom ratios in tracing Pu from nuclear releases and suggest that the Nagasaki-detonation Pu will be distinguishable in the environment for much longer than the FDNPP-accident Pu.The Yangtze River Delta (YRD) is one of the most populated and economically prosperous regions in China and contains numerous chemical industry parks. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs), surface water and sediment samples were collected from areas around the industrial parks. The total concentrations of 19 PAHs in water and sediment were 32.98-286 ng L-1 and 15.14-5355 ng g-1, respectively. The highest PAH concentrations in water and sediment were found in samples from Wuxi city, which were dominated by high molecular weight (HMW) PAHs, and strongly influenced by fine chemical parks. HMW compounds dominated in the sediment with PAHs containing four and five rings accounting for 61% of the sedimentary ΣPAHs, PAHs in water were dominated by low molecular weight (LMW) compounds (PAHs with two and three rings represented >68% of ΣPAHs). The results of isomeric ratio analysis and principal component analysis with multiple linear regression indicated that the PAH concentrations in water and sediment near the YRD chemical parks are strongly influenced by industrial emissions.