Heaththorpe3311
Although it has been supposed that the NO/cyclic GMP system produces inhibitory signals to reduce the resistance of the bladder outlet and urethra during the micturition phase, little is known on the mechanisms controlling the function of urethral smooth muscle. The aim of the present study was to examine in the male and female urethra the expression of phosphodiesterase (PDE) isoenzymes, known as key proteins of the cyclic GMP/AMP signaling.
Urethral tissue was obtained from 4 female cadavers and 7 male patients (who had undergone gender reassignment surgery). The expression of mRNA encoding for PDE1A, 1B, 1C, 2A, 4B, 4D, 5A, 10A and 11A was investigated by means of real-time polymerase chain reaction. YM201636 molecular weight Western blot (WB) analysis was conducted to detect PDE isoenzymes.
RT-PCR revealed relevant amounts of mRNA encoding for PDE1A, 2A, 4B, 5A, 10A and 11A in male and female urethral tissue. The expression of PDE1A, 2A, 4B and 10A was 2-fold higher in the female than in the male urethra, whereas the expression of PDE11A mRNA was 7-fold higher in the male tissue. In the WB experiments, immunosignals specific for PDE1A, PDE4A and 4B and PDE11A were of higher degree in the female than the male tissue specimens, while an almost equivocal expression of PDE2A, PDE5A and PDE10A was registered.
On the level of mRNA and function proteins, different patterns of expression of PDE isoenzymes were registered in human male and female urethra. Future studies may clarify whether inhibition of PDE isoenzymes is likely to facilitate the relaxation of the outflow region in both sexes.
On the level of mRNA and function proteins, different patterns of expression of PDE isoenzymes were registered in human male and female urethra. Future studies may clarify whether inhibition of PDE isoenzymes is likely to facilitate the relaxation of the outflow region in both sexes.
Neuromyelitis optica spectrum disorders (NMOSD) are rare neuroinflammatory demyelinating diseases of the CNS, mainly affecting optic nerves, spinal cord and brainstem regions. The diagnosis depends on clinical symptoms, MRI findings and the detection of autoantibodies against the water channel aquaporin 4 (AQP4-Ab). This autoantibody is particularly important for diagnostic sensitivity and specificity and further sets the course for major therapeutic decisions. Due to a relapsing course with the accumulation of disability, relapse prevention by immunotherapy is crucial in NMOSD. Until recently, disease-modifying agents specific to NMOSD were not available, and patients were treated with various immunosuppressive drugs and regimens - with variable success. Fortunately, since 2019, three new therapeutic antibodies have entered the market.
We aim to shortly summarise the pathogenesis and biological targets for acute and preventive therapy of adult NMOSD. We will focus on conventional immunotherapies and the y.
Although satralizumab, eculizumab and inebilizumab are a breakthrough concerning short-term efficacy, important questions on their future use remain open. There is no data from head-to-head comparisons, and data on long-term safety and efficacy of the new medicines are pending. Whether any of the biologics are efficacious in AQP4-Ab negative NMOSD patients is not yet known - as is how they will succeed in non-responders to conventional immunotherapies. Further, (autoimmune) comorbidities, affordability, and market availability of drugs may be decisive factors for choosing treatments in the near future. We are fortunate to have these new drugs available now, but they will not immediately supersede established off-label drugs in this indication. It is still too early to definitively revise the treatment algorithms for NMOSD - although we are probably on the way.Phosphatidylcholine (PC) is the most abundant type of phospholipids in eukaryotes constituting ~30% of total lipids in Leishmania. PC synthesis mainly occurs via the choline branch of the Kennedy pathway (choline ⇒ choline-phosphate ⇒ CDP-choline ⇒ PC) and the N-methylation of phosphatidylethanolamine (PE). In addition, Leishmania parasites can acquire PC and other lipids from the host or culture medium. In this study, we assessed the function and essentiality of choline ethanolamine phosphotransferase (CEPT) in Leishmania major which is responsible for the final step of the de novo synthesis of PC and PE. Our data indicate that CEPT is localized in the endoplasmic reticulum and possesses the activity to generate PC from CDP-choline and diacylglycerol. Targeted deletion of CEPT is only possible in the presence of an episomal CEPT gene in the promastigote stage of L. major. These chromosomal null parasites require the episomal expression of CEPT to survive in culture, confirming its essentiality during the promastigote stage. In contrast, during in vivo infection of BALB/c mice, these chromosomal null parasites appeared to lose the episomal copy of CEPT while maintaining normal levels of virulence, replication and cellular PC. Therefore, while the de novo synthesis of PC/PE is indispensable for the proliferation of promastigotes, intracellular amastigotes appear to acquire most of their lipids through salvage and remodeling.Trypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body. Subpellicular, mitotic and axonemal microtubules are extensively acetylated in Trypanosoma cruzi. Acetylation on lysine (K) 40 of α-tubulin is conserved from lower eukaryotes to mammals and is associated with microtubule stability. It is also known that K40 acetylation occurs significantly on flagella, centrioles, cilia, basal body and the mitotic spindle in eukaryotes. Several tubulin posttranslational modifications, including acetylation of K40, have been cataloged in trypanosomatids, but the functional importance of these modifications for microtubule dynamics and parasite biology remains largely undefined.