Haymouritzen1189

Z Iurium Wiki

Scanning electron microscopy (SEM) analysis shows the highest degree of strut coating damage in the KBI group. This model demonstrated significant differences in CFD analysis at SB ostia with and without KBI optimization in the LM setting. The adoption of KBI was related to a meaningful reduction of flow disturbances in conventional DES and achieved results similar to BD-DES.Natural hydrogels are growing in interest as a priority for wound healing. Plant polysaccharides have a variety of biological pharmacological activities, and chitosan hydrogels have proven strong antimicrobial effects, but hydrogels prepared with polysaccharides alone have certain deficiencies. Polysaccharides from flowers of Lonicera japonica Thunb. (LP) and the aerial parts of Mentha canadensis L. (MP) were extracted and oxidized by sodium periodate (NaIO4) and then cross-linked with oxidized-carboxymethylated chitosan (O-CCS) to develop oxidized plant- polysaccharides-chitosan hydrogels (OPHs). SEM observation showed that OPHs had porous interior structures with interconnecting pores. The OPHs showed good swelling, water-retention ability, blood coagulation, cytocompatibility properties, and low cytotoxicity (classed as grade 1 according to United States Pharmacopoeia), which met the requirements for wound dressings. Then the cutaneous wound-healing effect was evaluated in BALB/C mice model, after 7 days treatment, the wound-closure rate of OPHs groups were all greater than 50%, and after 14 days, all were greater than 90%, while the value of the control group was only 72.6%. Of them, OPH-2 and OPH-3 were more favorable to the wound-healing process, as the promotion was more significant. The plant polysaccharides and CS-based hydrogel should be a candidate for cutaneous wound dressings.In this work, graphite nanoplatelets (GNP) were incorporated into poly (ethylene terephthalate) (PET) matrix to prepare PET-GNP nanocomposites using a melt compounding followed by compression moulding and then quenching process. Both static and dynamic mechanical properties of these quenched materials were characterized as a function of GNP contents using dynamic mechanical thermal analysis (DMTA) and tensile machine, respectively. selleckchem The results demonstrated that the addition of GNP improved the stiffness of PET significantly. Additionally, the maximum increase in the storage modulus of 72% at 6 wt.% GNP. The incorporation of GNP beyond 6 wt.% into PET decreases the storage moduli, but they remain higher than pure PET. The observed reduction could be due to agglomeration, resulting in poorer dispersion and distribution of higher levels of GNP into the PET matrix. In contrast to the results for moduli, tensile strength and elongations at break reduce with increasing the GNP content. For example, tensile strength reduced from ∼46 MPa (neat PET) to ∼39 MPa (-15%) for the nanocomposites containing 2 wt.% GNP. This reduction is accompanied by a decline in elongation at break from ∼6.3 (neat PET) to ∼3.4 (-46%) for the same nanocomposites. Such reductions are followed by a gradual decrease in upon further addition of GNP. These reductions indicate that increasing GNP loadings, results in brittleness in nanocomposites. In addition, it was found that quenched PET and composite samples were not fully crystallized after processing and therefore (cold) crystallized during the first heating cycle DMTA, as indicated by a rise in storage moduli above the glass transition temperature during the DMTA first heat. Furthermore, mathematical models based on non-linear theories are developed to capture the experimental data. For this, a set of mechanical stress-strain data is used for model parameters' identification. Another set of data is used for the model validation that demonstrates good agreements with the experimental study.In this study, we aimed to produce, innovative and, at the same time, environmentally-friendly, biopolymer double-layer films with fish processing waste and active lingonberry extract as additives. These double-layered films were based on furcellaran (FUR) (1st layer) and carboxymethyl cellulose (CMC) with a gelatin hydrolysate (HGEL) (2nd layer). The aim of the study was to assess their impact on the durability of perishable salmon fillets during storage, and to evaluate their degree of biodegradation. The fillets were analyzed for changes in microbiological quality (total microbial count, yeast and molds, and psychrotrophic bacteria), biogenic amine content (HPLC), and lipid oxidation (peroxidase and acid values, TBARS). The degree of biodegradation includes analysis of film and compost chemical composition solubility, respiratory activity, and ecotoxicity testing. The obtained results allow to suggest that active films are not only bacteriostatic, but even bactericidal when they used to coat fish fillets. Concerning the group of samples covered with the double-layer films, a 19.42% lower total bacteria count was noted compared to the control samples. Furthermore, it can be observed that the applied double-layer films have a potentially strong inhibitory effect on the accumulation of biogenic amines in fish, which is correlated with its antimicrobial effect (the total biogenic amine content for control samples totaled 263.51 mg/kg, while for the double-layer samples, their value equaled 164.90 mg/kg). The achieved results indicate a high biodegradation potential, however, a too low pH of the film results in limiting seed germination and growth. Despite that, of these, double-layer films are a technology that has applicative potential.Polyimides (PI) are a class of dielectric polymer used in a wide range of electronics and electrical engineering applications from low-voltage microelectronics to high voltage isolation. They are well appreciated because of their excellent thermal, electrical, and mechanical properties, each of which need to be optimized uniquely depending on the end application. For example, for high-voltage applications, the final polymer breakdown field and dielectric properties must be optimized, both of which are dependent on the curing process and the final physico-chemical properties of PI. The majority of studies to date have focused on a limited set of properties of the polymer and have analyzed the effect of curing from a physicochemical-, mechanical- or electrical-centric viewpoint. This paper seeks to overcome this, unifying all of these characterizations in the same study to accurately describe the universal effect of the cure temperature on the properties of PI and at an industrial processing scale. This paper rprovement at an intermediate temperature emphasizing an ideal compromise between a high DOI and PI chain packing when the thermal imidization process is performed over this equilibrium. This balance enables maximum performance to be obtained for the PI film with optimized electrical properties and, overall, optimal thermal and mechanical properties are achieved.The work is devoted to the prediction and experimental research of the elastic bending modulus of glass-reinforced plastics with an epoxy matrix on anhydride hardener reinforced with different glass fabrics. Experimental studies have been carried out to assess the effect of thermal relaxation of the polymer matrix structure due to long-term exposure to elevated temperatures (above the glass transition temperature of the polymer matrix) on the GRP elastic bending modulus at temperatures ranging from 25 to 180 °C. It has been shown that due to the thermal relaxation of the polymer matrix structure, the GRP modulus increases significantly at temperatures above 110 °C and decreases slightly at lower temperatures. Using a multiscale simulation based on a combination of the finite-element homogenization method in the Material Designer module of the ANSYS software package and three-point bending simulation in the ANSYS APDL module, the elastic modulus of FRP was predicted concerning the temperature, its averaged structural properties, and thermal relaxation of the polymer matrix structure. We have also carried out the prediction of the temperature dependences of the modulus of elasticity of glass-reinforced plastics on different types of glass fabrics in the range from 25 to 200 °C by using the entropic approach and the layered model.In this study, we described the preparation of sponge-like porous scaffolds that are feasible for medical applications. A porous structure provides a good microenvironment for cell attachment and proliferation. In this study, a biocompatible PHA, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) was blended with gelatine to improve the copolymer's hydrophilicity, while structural porosity was introduced into the scaffold via a combination of solvent casting and freeze-drying techniques. Scanning electron microscopy results revealed that the blended scaffolds exhibited higher porosity when the 4HB compositions of P(3HB-co-4HB) ranged from 27 mol% to 50 mol%, but porosity decreased with a high 4HB monomer composition of 82 mol%. The pore size, water absorption capacity, and cell proliferation assay results showed significant improvement after the final weight of blend scaffolds was reduced by half from the initial 0.79 g to 0.4 g. The pore size of 0.79g-(P27mol%G10) increased three-fold while the water absorption capacity of 0.4g-(P50mol%G10) increased to 325%. Meanwhile, the cell proliferation and attachment of 0.4g-(P50mol%G10) and 0.4g-(P82mol%G7.5) increased as compared to the initial seeding number. Based on the overall data obtained, we can conclude that the introduction of a small amount of gelatine into P(3HB-co-4HB) improved the physical and biological properties of blend scaffolds, and the 0.4g-(P50mol%G10) shows great potential for medical applications considering its unique structure and properties.There is a demand for long afterglow composites due to their potential applications in nighttime signal boards, sensors, and biomedical areas. In this study, Polypropylene (PP)/strontium aluminate-based composites [SrAl2O4Eu2+/Dy3+ (SAO1) and Sr4Al14O25 Eu+2, Dy+3 (SAO2)] with maleic anhydride grafted PP compatibilizer (PRIEX) were prepared, and their auto-glowing properties were examined. After UV excitation at 320 nm, the PP/5PRIEX/SAO1 composites showed green emission at 520 nm, and blue emission was observed for PP/5PRIEX/SAO2 around 495 nm. The intensity of phosphorescence emission and phosphorescence decay was found to be proportional to the filler content (SAO1 and SAO2). The FTIR analysis excluded the copolymerization reaction between the SAO1 and SAO2 fillers and the PP matrix during the high-temperature melt mixing process. The SAO1 and SAO2 fillers decreased the overall crystallinity of the composites without affecting the Tm and Tc (melting and crystallization temperature) values. The thermal stability of the composites was slightly improved with the SAO1 and SAO2 fillers, as seen from the TGA curve. Due to the plasticizing effect of the compatibilizer and the agglomeration of the SAO1 and SAO2 fillers, the tensile modulus, tensile strength, and storage modulus of the composites was found to be decreased with an increase in the SAO1 and SAO2 content. The decreasing effect was more pronounced, especially with the bulk-sized SAO2 filler.

Autoři článku: Haymouritzen1189 (Lundgaard Morales)