Hayesahmed0530

Z Iurium Wiki

Additionally, microbial community analysis revealed that in the G-DMBR several fouling-causing phyla including Proteobacteria reduced while other phyla preferring attached growth such as Bacteroidetes and Gemmatimonadetes increased. Thus, adding GAC to the DMBR can be an effective strategy for achieving stable and high-flux operation by modifying DM properties and regulating DM formation process and structure.Precipitation regime in arid and semi-arid regions is exhibiting a trend of increase in rainfall intensity but reduction in frequency under global climate change. In addition, nitrogen (N) deposition occurs simultaneously in the same regions. Nematodes are the dominant soil biota in terrestrial ecosystems and are involved in various underground processes. How the diversity of nematode communities responds to changing precipitation regime and how N deposition regulates the responses remain unclear. Here, we performed a field experiment initiated in 2012 to examine the effect of changes in the precipitation regime (2 mm precipitation intensity, 5 mm precipitation intensity, 10 mm precipitation intensity, 20 mm precipitation intensity, and 40 mm precipitation intensity) and N addition (10 g N m-2 yr-1) on soil nematode community in a semi-arid grassland in Inner Mongolia of China. We found that the abundance and diversity of nematodes increased under the treatments with fewer but stronger precipitation events (the largest abundance of total nematodes was 1458.37 individuals/100 g dry soil occurred under 40 mm intensity treatment). However, N addition reduced nematode diversity under these treatments, which largely offset the positive effects of increased rainfall intensity alone. Soil pH and plant belowground biomass were the main factors affecting nematode diversity. Our results imply that, as a consequence of global climate change, an increase in the intensity of rainfall events in the coming decades may favor the nematode communities within arid and semi-arid ecosystems. However, this positive effect may be largely offset by soil acidification in the regions experiencing heavy N deposition.Crop productivity maximization while minimizing carbon emissions is of critical importance for achieving sustainable agriculture. Socio-economic and ecological benefits should be taken together under the circumstance of stagnant farming profitability and climatic variability. The effectiveness of various mulching strategies in rain-fed semiarid areas has been confirmed, but scarce the comprehensive evaluations of the conventional and new mulching strategies in terms of yield, economic benefit, and carbon footprint based on life cycle assessment (LCA) have been conducted. Hence, a two-year field experiment was conducted on maize (Zea mays L.) crop to explore the effects of four mulching strategies (PM plastic-film mulching, SM maize straw mulching, BM biodegradable-film mulching, and NM no mulching) on the yield, net return, greenhouse gas (GHG) emissions, and carbon footprint (CF). The results revealed that PM and BM significantly increased maize yield by 11.3-13.3% and 9.4-10.6%. PM marginally raised the net return by 2.0-2.4% whereas BM slightly reduced it by 4.6-8.8% relative to NM. Unexpectedly, the yield and net return were the lowest under SM, and intensified N2O emissions, GWPdirect, and yield-scaled GWPdirect were observed. When the GHGs using LCA concept and SOC sequestration rate were considered, the lowest net GWP (1804.1-1836.4 kg CO2-eq ha-1) and CF (148.9-119.9kg CO2-eq t-1) were observed in the SM treatment due to the boost of soil organic carbon (SOC) sequestration. Conversely, PM and BM significantly increased the net GWP and CF compared to NM. When the tradeoffs between the high production, high net return and low net GWP were assessed by an integrated evaluation framework, the NM was recommended as an efficient low-carbon agricultural practice in the rain-fed semiarid areas.Anaerobic sludge digested (ASD) wastewater is widespread in wastewater treatment plants. Recovering phosphate from ASD wastewater not only removes pollutants but also solves the phosphorus deficiency problem. Iron-air fuel cells were chosen to recover phosphate and generate electricity from ASD wastewater. https://www.selleckchem.com/products/dorsomorphin-2hcl.html To optimize cell configuration, a two-chamber and a one-chamber iron-air fuel cell were set up. The phosphate removal efficiency, the vivianite yield and the electricity generation efficiency of the two fuel cells were evaluated. It turned out that the volumetric removal rate (VRR) of phosphate of the two-chamber cell was 11.60 mg P·L-1·h-1, which was about five times of that in the one-chamber cell. The phosphate recovery product vivianite was detected on the surface of the iron anodes and the calculated purities of the two-chamber fuel cell and one-chamber fuel cell were 90.6% and 58.7%, respectively. Considering the content and purity, the iron anode surface in the two-chamber fuel cell was the best point to recover phosphate. The proton exchange membrane (PEM) in the two-chamber fuel cell provided low pH conditions suitable for vivianite formation. Moreover, under the low pH condition, metal ions of Fe2+, Ca2+, Al3+ and so on were kept soluble, leading to a high conductivity. The high conductivity caused low internal resistance, which benefited the electricity generation. The total output electric power of the two-chamber fuel cell was 2.4 times that of the one-chamber fuel cell when treating 25 mL ASD wastewater (0.62 vs. 0.26 mW·h). Overall, the two-chamber fuel cell was the better choice for phosphate recovery and electricity generation from ASD wastewater. Further studies on the long-term operation of two-chamber fuel cells should be carried out.Co-composting of sludge and food waste eliminates the disadvantages of composting these waste products separately. Specifically, co-composing neutralizes the pollutants and improves the organic matter that occur in sewage sludge, and solves the problem of the low pH values and high moisture content of food waste. However, little is known about the functional microorganisms, microbial metabolic capacity, and biosecurity risks involved in sewage sludge and food waste co-composting. Therefore, this study established four lab-scale composting reactors [T1 (separate composting of food waste), T2 (separate composting of sewage sludge), T3 (sewage sludge and food waste co-composting at a C/N ratio of 25), and T4 (equal proportions composting of sewage sludge and food waste)] to assess the feasibility of sewage sludge and food waste aerobic co-composting. Our findings indicated that polysaccharides and proteins in T3 could be effectively degraded, and the total nutrient levels in T3 were higher than those in the other groups. After composting, the microbial diversity and richness of T3 were higher than that of T1. In later composting stages, the functional microorganisms in T1 maintained higher metabolic activity, however, it also had a higher biosecurity risk than T3 due to the presence of pathogenic bacteria such as Enterococcus_faecalis and Bacillus_circulan. Although the product of T3 could not be used as a microbial fertilizer, its biosecurity risk was lower than that of T1 and could therefore be used as an organic fertilizer. Redundancy analysis (RDA) results indicated that changing the microbial community structure by adjusting key environmental factors could improve composting quality and reduce microbial safety risks. Collectively, our results provide a theoretical basis for the development of co-composting strategies for the biodegradation of perishable solid organic waste, in addition to proposing the risk of pathogenic bacteria exposure that could endanger human and animal health.Chromium is one of the highly toxic heavy metals to plant growth and development especially hexavalent chromium (Cr+6) due to its readily available nature and mobility into the environment. The chelating agents and hyperaccumulator plant can contribute to remediating the heavy metals from the contaminated medium. This study was conducted to analyze the role of citric acid and chromium resistant bacteria in castor bean to remediate Cr+6 from the polluted soil. The soil was spiked with different levels of citric acid (0, 2.5, 5 mM) and chromium (0, 10, 20 mg kg-1). The ripened plants were harvested and analyzed for growth parameters, chlorophyll contents, gas exchange parameters, oxidative stress markers, antioxidant enzymes activities and chromium accumulation in different parts of plants. The high concentration of chromium 20 mg kg-1 drastically reduced the plant growth, decreased photosynthetic rate and increased oxidative stress. The application of CA improved the plant growth even at the highest concentration of chromium which was further boosted by the combined application of CA and chromium resistant bacteria. However, the performance of staphylococcus aureus was found significantly better than Bacillus subtilis due to its better ability to tolerate chromium toxicity even at high concentrations. The findings proved that castor bean has excellent potential to tolerate high chromium concentrations and can be effectively used to remediate metals contaminated soil. Further, CA and metal resistant bacteria can significantly enhance the phytoremediation potential of castor bean and other hyperaccumulator plants. The bacteria assisted phytoremediation coupled with the chelating agent can be a practical approach to remediate the metals contaminating soils.With the advancement of water ecological protection and water control standard, it is the general trend to upgrade the wastewater treatment plants (WWTPs). The simultaneous removal of nitrogen and phosphorus is the key to improve the water quality of secondary effluent of WWTPs to prevent the eutrophication. Therefore, it is urgent to develop the applicable technologies for simultaneous biological removal of nitrogen and phosphorus from secondary effluent. In this review, the composition of secondary effluent from municipal WWTPs were briefly introduced firstly, then the three main treatment processes for simultaneous nitrogen and phosphorus removal, i.e., the enhanced denitrifying phosphorus removal filter, the pyrite-based autotrophic denitrification and the microalgae biological treatment system were summarized, their performances and mechanisms were analyzed. The influencing factors and microbial community structure were discussed. The advanced removal of nitrogen and phosphorus by different technologies were also compared and summarized in terms of performance, operational characteristics, disadvantage and cost. Finally, the challenges and future prospects of simultaneous removal of nitrogen and phosphorus technologies for secondary effluent were proposed. This review will deepen to understand the principles and applications of the advanced removal of nitrogen and phosphorus and provide some valuable information for upgrading the treatment process of WWTPs.In this study, a permanganate-assisted electrocoagulation-ultrafiltration (PEC-UF) process was proposed to control membrane fouling in the treatment of secondary effluent. Four comparable systems, i.e., UF, electro-UF (E-UF), electrocoagulation-UF (EC-UF), and PEC-UF, were investigated to systematically clarify the role of permanganate and electrocoagulation in mitigating membrane fouling. Results revealed that the formation of a dense cake layer containing concentrated solutes was the primary reason for membrane fouling. Electrocoagulation significantly mitigated membrane fouling and resulted in the reduction of the normalized transmembrane pressure of the EC-UF and PEC-UF systems by 35.0% and 44.6% compared with the UF control system, respectively. However, the retention of a considerable amount of iron oxyhydroxide precipitates on the membrane surface aggravated inorganic fouling in the in-situ EC-UF system. Furthermore, the enhanced formation of Fe(III) by oxidation of Fe(II) with permanganate promoted the coagulation process.

Autoři článku: Hayesahmed0530 (Skinner Graversen)