Hawkinshouse9698

Z Iurium Wiki

Fully inverted atoms placed at exactly the same location synchronize as they deexcite, and light is emitted in a burst (known as "Dicke's superradiance"). Autophinib cost We investigate the role of finite interatomic separation on correlated decay in mesoscopic chains and provide an understanding in terms of collective jump operators. We show that the superradiant burst survives at small distances, despite Hamiltonian dipole-dipole interactions. However, for larger separations, competition between different jump operators leads to dephasing, suppressing superradiance. Collective effects are still significant for arrays with lattice constants of the order of a wavelength, and lead to a photon emission rate that decays nonexponentially in time. We calculate the two-photon correlation function and demonstrate that emission is correlated and directional, as well as sensitive to small changes in the interatomic distance. These features can be measured in current experimental setups, and are robust to realistic imperfections.Quantum photon sources of high rate, brightness, and purity are increasingly desirable as quantum information systems are quickly scaled up and applied to many fields. Using a periodically poled lithium niobate microresonator on chip, we demonstrate photon-pair generation at high rates of 8.5 and 36.3 MHz using only 3.4 and 13.4  μW pump power, respectively, marking orders of magnitude improvement over the state of the art, across all material platforms. These results constitute the first direct measurement of the device's giant single photon nonlinearity. The measured coincidence to accidental ratio is well above 100 at those high rates and reaches 14682±4427 at a lower pump power. The same chip enables heralded single-photon generation at tens of megahertz rates, each with low autocorrelation g_H^(2)(0)=0.008 and 0.097 for the microwatt pumps, which marks a new milestone. Such distinct performance, facilitated by the chip device's noiseless and giant optical nonlinearity, will contribute to the forthcoming pervasive adoption of quantum optical information technologies.Exquisite polarization control using optical metasurfaces has attracted considerable attention thanks to their ability to manipulate multichannel independent wavefronts with subwavelength resolution. Here we present a new class of metasurface polarization optics, which enables imposition of two arbitrary and independent amplitude profiles on any pair of orthogonal states of polarization. The implementation method involves a polarization-dependent interference mechanism achieved by constructing a metasurface composed of an array of nanoscale birefringent waveplates. Based on this principle, we experimentally demonstrate chiral grayscale metasurface and chiral shadow rendering of structured light. These results illustrate a general approach interlinking amplitude profiles and orthogonal states of polarization and expands the scope of metasurface polarization shaping optics.Two-color terahertz (THz) generation is a field-matter process combining an optical pulse and its second harmonic. Its application in condensed matter is challenged by the lack of phase matching among multiple interacting fields. Here, we demonstrate phase-matching-free two-color THz conversion in condensed matter by introducing a highly resonant absorptive system. The generation is driven by a third-order nonlinear interaction localized at the surface of a narrow-band-gap semiconductor, and depends directly on the relative phase between the two colors. We show how to isolate the third-order effect among other competitive THz-emitting surface mechanisms, exposing the general features of the two-color process.We construct a conformal lattice theory with only gauge degrees of freedom based on the induced nonlocal gauge action in QED_3 coupled to large number of flavors N of massless two-component Dirac fermions. This lattice system displays signatures of criticality in gauge observables, without any fine-tuning of couplings and can be studied without Monte Carlo critical slowdown. By coupling exactly massless fermion sources to the lattice gauge model, we demonstrate that nontrivial anomalous dimensions are induced in fermion bilinears depending on the dimensionless electric charge of the fermion. We present a proof-of-principle lattice computation of the Wilson-coefficients of various fermion bilinear three-point functions. Finally, by mapping the charge q of fermion in the model to a flavor N in massless QED_3, we point to a universality in low-lying Dirac spectrum and an evidence of self-duality of N=2 QED_3.The temperonic crystal, a periodic structure with a unit cell made of two slabs sustaining temperature wavelike oscillations on short timescales, is introduced. The complex-valued dispersion relation for the temperature scalar field is investigated for the case of a localized temperature pulse. The dispersion discloses frequency gaps, tunable upon varying the slabs' thermal properties. Results are shown for the paradigmatic case of a graphene-based temperonic crystal. The temperonic crystal extends the concept of superlattices to the realm of temperature waves, allowing for coherent control of ultrafast temperature pulses in the hydrodynamic regime at above liquid nitrogen temperatures.Topological flat bands, such as the band in twisted bilayer graphene, are becoming a promising platform to study topics such as correlation physics, superconductivity, and transport. In this Letter, we introduce a generic approach to construct two-dimensional (2D) topological quasiflat bands from line graphs and split graphs of bipartite lattices. A line graph or split graph of a bipartite lattice exhibits a set of flat bands and a set of dispersive bands. The flat band connects to the dispersive bands through a degenerate state at some momentum. We find that, with spin-orbit coupling (SOC), the flat band becomes quasiflat and gapped from the dispersive bands. By studying a series of specific line graphs and split graphs of bipartite lattices, we find that (i) if the flat band (without SOC) has inversion or C_2 symmetry and is nondegenerate, then the resulting quasiflat band must be topologically nontrivial, and (ii) if the flat band (without SOC) is degenerate, then there exists a SOC potential such that the resulting quasiflat band is topologically nontrivial.

Autoři článku: Hawkinshouse9698 (Elmore Barrett)