Hauserskriver1684
Our assays are rapid, inexpensive, high capacity, easy to perform, and only require small sample amounts. Therefore, they facilitate the breeding and study of KS mouse models and help advance our knowledge of the pathological mechanism underlying KS.Patients with chronic liver disease (CLD) and liver transplant recipients are at increased risk of morbidity and mortality from coronavirus disease 2019 (COVID-19). Although several studies demonstrated the safety and efficacy of COVID-19 vaccines in the general population, data in CLD patients and liver transplant recipients are lacking. Two COVID-19 vaccines were approved by the Saudi Food and Drug Authority and rolled out to several million recipients in Saudi Arabia. These vaccines are mRNA-based vaccine BNT162b2 from Pfizer/BioNTech and adenovirus-based AZD1222 from Oxford/AstraZeneca from three manufacturing sites (EU Nodes, Serum Institute of India, and South Korea Bio). The Saudi Association for the Study of Liver diseases and Transplantation (SASLT) has reviewed the available evidence and issued interim recommendations for COVID-19 vaccination in CLD and liver transplant recipients. Since there is no evidence contradicting the safety and immunogenicity of the currently approved COVID-19 vaccines in patients with CLD and hepatobiliary cancer and liver transplant recipients, the SASLT recommends vaccination in those patient populations. CLD and hepatobiliary cancer patients and liver transplant recipients should be prioritized depending on the risk factors for severe COVID-19. In transplant recipients, the optimal timing of vaccination remains unknown; however, immunization is recommended after the initial immunosuppression phase. Patients with CLD and liver transplant candidates or recipients should be closely monitored after COVID-19 vaccination. These patient populations should be included in future clinical trials to provide further evidence on the efficacy and safety of COVID-19 vaccines.The omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6-/-) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6-/- brains contained lower DHA compared with controls across the life span. The loss of DHA- and increased arachidonate-enriched phospholipids were visualized by MALDI imaging predominantly in neuron-rich regions where single-molecule RNA in situ hybridization localized Acsl6 to neurons. ACSL6 is also astrocytic; however, we found that astrocyte-specific ACSL6 depletion did not alter membrane DHA because astrocytes express a non-DHA-preferring ACSL6 variant. Across the life span, Acsl6-/- mice exhibited hyperlocomotion, impairments in working spatial memory, and increased cholesterol biosynthesis genes. Aging caused Acsl6-/- brains to decrease the expression of membrane, bioenergetic, ribosomal, and synaptic genes and increase the expression of immune response genes. HG99101 With age, the Acsl6-/- cerebellum became inflamed and gliotic. Together, our findings suggest that ACSL6 promotes membrane DHA enrichment in neurons, but not in astrocytes, and is important for neuronal DHA levels across the life span. The loss of ACSL6 impacts motor function, memory, and age-related neuroinflammation, reflecting the importance of neuronal ACSL6-mediated lipid metabolism across the life span.Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment. The time sequence and dynamic evolution of the opposing functions are especially unclear. Given limits of in vivo monitoring in human diseases such as multiple sclerosis (MS), animal models are warranted to investigate the association and timing of innate immune activation with neurodegeneration. Using noninvasive in vivo retinal imaging of experimental autoimmune encephalitis (EAE) in CX3CR1GFP/+-knock-in mice followed by transcriptional profiling, we are able to show 2 distinct waves separated by a marked reduction in the number of innate immune cells and change in cell morphology. The first wave is characterized by an inflammatory phagocytic phenotype preceding the onset of EAE, whereas the second wave is characterized by a regulatory, antiinflammatory phenotype during the chronic stage. Additionally, the magnitude of the first wave is associated with neuronal loss. Two transcripts identified - growth arrest-specific protein 6 (GAS6) and suppressor of cytokine signaling 3 (SOCS3) - might be promising targets for enhancing protective effects of microglia in the chronic phase after initial injury.Abnormal action potential (AP) properties, as occurs in long or short QT syndromes (LQTS and SQTS, respectively), can cause life-threatening arrhythmias. Optogenetics strategies, utilizing light-sensitive proteins, have emerged as experimental platforms for cardiac pacing, resynchronization, and defibrillation. We tested the hypothesis that similar optogenetic tools can modulate the cardiomyocyte's AP properties, as a potentially novel antiarrhythmic strategy. Healthy control and LQTS/SQTS patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were transduced to express the light-sensitive cationic channel channelrhodopsin-2 (ChR2) or the anionic-selective opsin, ACR2. Detailed patch-clamp, confocal-microscopy, and optical mapping studies evaluated the ability of spatiotemporally defined optogenetic protocols to modulate AP properties and prevent arrhythmogenesis in the hiPSC-CMs cell/tissue models. Depending on illumination timing, light-induced ChR2 activation induced robust prolongation or mild shortening of AP duration (APD), while ACR2 activation allowed effective APD shortening. Fine-tuning these approaches allowed for the normalization of pathological AP properties and suppression of arrhythmogenicity in the LQTS/SQTS hiPSC-CM cellular models. We next established a SQTS-hiPSC-CMs-based tissue model of reentrant-arrhythmias using optogenetic cross-field stimulation. An APD-modulating optogenetic protocol was then designed to dynamically prolong APD of the propagating wavefront, completely preventing arrhythmogenesis in this model. This work highlights the potential of optogenetics in studying repolarization abnormalities and in developing novel antiarrhythmic therapies.