Hartviggarza6753

Z Iurium Wiki

In the current Tumor-Node-Metastasis (TNM) classification system for renal cell carcinoma (RCC), both perinephric fat invasion (PFI) and renal sinus fat invasion (SFI) are classified at the T3a stage. However, their associated prognoses are clinically controversial. The present study proposes a new sub-classification criterion for pathological T3a (pT3a) RCC with SFI or PFI to resolve this dispute. Data were collected from consecutive records of 2,765 patients with T1a renal cancer, who had undergone partial nephrectomy (PN) between 2001 and 2015 at one of four hospitals. Among these patients, 127 cases were diagnosed with stage pT3a RCC with SFI or PFI, according to final pathological examination. The pathological characteristics, clinical data and follow-up observations were analyzed. Of the 127 patients, with an average follow-up duration of 56 months (range, 15-60 months), 17 cases of tumor recurrence were found. After analysis of the pathological findings, the following new sub-classification criteria was proposed for pT3a RCC with SFI or PFI i) Type A, renal tumor invades the pseudo-capsule and contacts with the perinephric adipose tissues directly (3 recurrences out of 57 patients); ii) type B, tumor protrudes into the perinephric adipose tissues like a tongue (4 recurrences out of 29 patients); and iii) type C, tumor nodules distribute in perinephric adipose tissues (10 recurrences out of 41 patients). There was statistically significant difference between the three subtypes in terms of recurrence rate (P=0.023). In conclusion, controversies remain in the current TNM classification system for pT3a RCC. The present study added to the available data and found that pT3a RCC with tumor nodules in perinephric adipose or/and with an irregular tumor protruding into adipose tissues showed a higher recurrence rate. Thus, it is recommended that pT3a RCC should be carefully analyzed and should be considered differently to other stages of RCC. Copyright © Zhu et al.The identification of novel and accurate biomarkers is important to improve the prognosis of patients with hepatocellular carcinoma (HCC). C-Type lectin domain family 4 member M (CLEC4M) is involved in the progression of numerous cancer types. However, the clinical significance of CLEC4M in HCC is yet to be elucidated. The aim of the present study is to evaluate the involvement of CLEC4M in HCC progression. The expression level of CLEC4M was determined in tumor, and their corresponding adjacent non-tumor tissues derived from 88 patients with HCC, using immunohistochemistry, western blot and reverse transcription-quantitative PCR. The correlation between CLEC4M expression and certain clinicopathological characteristics was retrospectively analyzed. The results suggested that CLEC4M was specifically labeled in sinusoidal endothelial cells, in both HCC and non-tumor tissues. Moreover, the expression of CLEC4M in tumor tissues was significantly lower than that in non-tumor tissues (P less then 0.0001), which indicated its potential as a biomarker of the development of HCC. Subsequently, correlation analysis suggested that the relatively higher CLEC4M expression in HCC tissues was significantly associated with increased microvascular invasion (P=0.008), larger tumor size (P=0.018), absence of tumor encapsulation (P less then 0.0001) and lower tumor differentiation (P=0.019). Notably, patients with high CLEC4M expression levels in their tumor tissues experienced more frequent recurrence and shorter overall survival (OS) times compared with the low-expression group. Furthermore, CLEC4M expression in tumor tissues was identified as an independent and significant risk factor for recurrence-free survival and OS. The results of the present study suggest that CLEC4M may be a valuable biomarker for the prognosis of the patients with HCC, postoperatively. Copyright © Luo et al.Spindle poisons are chemotherapeutic drugs used in the treatment of malignant tumors; however, numerous patients develop resistance following chemotherapy. The present study aimed to induce polyploidy in breast cancer cells using the spindle poison nocodazole to investigate the mechanism of polyploid-induced tumor resistance. It was revealed that the spindle poison nocodazole induced apoptosis in HCC1806 cells but also induced polyploidy in MDA-MB-231 cells. The drug sensitivities of the polyploid MDA-MB-231 cells to paclitaxel, docetaxel, epirubicin, 5-fluorouracil and oxaliplatin were lower than those of the original tumor cells; however, the polyploid MDA-MB-231 cells were more sensitive to etoposide than the original tumor cells. The expression of F-box and WD repeat domain containing 7 (FBW7) was decreased, while the expression of MCL1 apoptosis regulator BCL2 family member (MCL-1) and Bcl-2 was increased, and caspase-3/9 and Bax were not expressed in MDA-MB-231 cells. The resistance to docetaxel and etoposide was reversed, but the sensitivity of paclitaxel was not changed following Bcl-2 silencing. The formation of polyploidy in tumors may be one of the molecular mechanisms underlying tumor resistance to spindle poisons. Expression of the Bcl-2 family members, for example FBW7 and MCL-1, plays a key role in apoptosis and the cell escape process that forms polyploid cells. However, Bcl-2 silencing has different reversal effects on different anti-tumor drugs, which requires further investigation. Copyright © Yuan et al.Protein tyrosine phosphatase non-receptor type 11 (PTPN11) encodes the tyrosine phosphatase SHP-2 that is overexpressed in gastric cancer (GC). In the present study, the association of PTPN11 methylation levels with the incidence of GC and its correlation with SHP-2 overexpression were investigated. The methylation levels of PTPN11 in tumor and adjacent normal tissues of 112 GC patients were assessed by quantitative methylation specific PCR (qMSP). The Cancer Genome Atlas (TCGA) public database was used to analyze the association between PTPN11 methylation and PTPN11 expression. Survival analyses were conducted in order to evaluate the prognostic value of PTPN11 methylation for GC. The results of the qMSP analysis indicated that the methylation levels of PTPN11 in GC tumor tissues were significantly decreased compared with those noted in the normal adjacent tissues (mean with standard deviation 40.91±26.33 vs. 51.99±37.37, P=0.007). An inverse correlation between PTPN11 methylation levels and PTPN11 mRNA exprale patients, heavy drinking patients, patients with poor tumor differentiation and patients with TNM stage of III+IV. PTPN11 hypomethylation can be considered a biomarker for the recurrence of GC patients with an age of 60 years or lower. Copyright © Xu et al.The underlying molecular mechanisms of pancreatic neuroendocrine tumor (pNET) development have not yet been clearly identified. The present study revealed that thrombospondin 2 (THBS2) was downregulated in pNET tissues and cells. Forced expression of THBS2 inhibited the proliferation and migration of pNET cells in vitro. MicroRNA(miR)-744-5p was indicated to be a direct regulator of THBS2. Upregulation of miR-744-5p potentially caused THBS2 repression. Furthermore, THBS2 inhibited the production of matrix metalloproteinase (MMP) MMP9 through suppressing the transcriptional activity of CUT-like homeobox 1 (CUX1). CUX1 and MMP9 mediated the effect of THBS2 on pNET proliferation and migration, respectively. The results of the present study revealed a mechanistic role for THBS2 in pNET proliferation and migration, indicating that THBS2 was downregulated by miR-744-5p and further affected the CUX1/MMP9 cascade, which promoted the development of pNET. Copyright © Jiao et al.Biglycan (BGN), a key member of the small leucine-rich proteoglycan family, is an important component of the extracellular matrix. Clinical studies have demonstrated that upregulation of BGN is associated with poor prognosis in patients with various types of solid cancer. The present study analyzed the mRNA expression levels of BGN in various types of solid cancer when compared with that in normal tissues via the Oncomine database. The UALCAN, OncoLnc and Kaplan-Meier Plotter databases were additionally used to evaluate the prognostic values of BGN in patients with solid cancer and co-expression gene analysis was conducted using the protein-protein interaction networks of BGN. The present study observed that the mRNA expression levels of BGN were increased in bladder, brain and central nervous system, breast, colorectal, esophageal, gastric, head and neck, lung, ovarian and 28 subtypes of cancer compared with normal tissues. The increased expression of BGN was identified to be associated with a poor outcome in ovarian and gastric cancer. Based on the co-expression network, BGN was identified as the key gene in a 43-gene network. The present findings of increased expression of BGN in solid tumors and its positive association with poor outcome on patient survival indicate that BGN may serve as a prognostic marker and as a target for novel therapeutics for multiple types of cancer. Copyright © Zhao et al.Non-small cell lung cancer (NSCLC) constitutes the majority of all lung-cancer cases. Aquaporin 5 (AQP5) may be involved in NSCLC by promoting lung-cancer initiation and progression. The present study aimed to determine the role of AQP5 in migration and angiogenesis using NSCLC cells and HUVECs. AQPs 1, 3, 4, 5, 8 and 9 were screened in the NSCLC cell line H1299, and the present results showed that AQP5 mRNA was upregulated compared with the other AQP genes. At the protein level, AQP5 was significantly increased in H1299 cells compared with 16HBE cells. AQP5 knockdown in H1299 cells significantly decreased cell migration compared with untransfected cells, as demonstrated by both Transwell and wound closure assays. The present study further investigated H1299 ability to promote HUVEC vascularisation. The supernatants of both transfected and untransfected H1299 cells were used as conditioned medium for HUVECs, and tube formation was measured. The supernatant of AQP5-downregulated cells exhibited significantly low tube formation potential compared with untransfected cells. Similarly, vascular endothelial growth factor was significantly increased in control cells (si-NC) compared with cells transfected with small interfering RNA targeting AQP5. The present study found that AQP5 downregulation significantly decreased the phosphorylation level of epidermal growth factor receptor and the activity of the ERK1/2 pathway. In summary, the present study suggested that AQP5 influenced migration and angiogenesis in NSCLCs in vitro and may potentially exhibit similar in vivo effects. Copyright © Elkhider et al.F-box and WD repeat domain-containing protein 7 (FBW7), also known as FBXW7, AGO or hCDC4, is an F-box protein with seven tandem WD40 repeats. FBW7 is a key substrate recognition subunit of the Skp1-Cul1-F-box-protein E3 ubiquitin ligase. FBW7 targets for ubiquitination and destruction of numerous crucial transcription factors and protooncogenes, including cyclin E, c-Myc, c-Jun, Notch and MCL-1. FBW7 is a well-characterized tumor suppressor, and its gene is frequently mutated or deleted in various types of human cancer, including colorectal cancer, gastric cancer, ovarian cancer and different types of leukemia. Accumulating evidence indicates that the aberrant expression of FBW7 is involved in the development of hematological tumors, including T cell acute lymphoblastic leukemia, adult T cell leukemia/lymphoma, chronic lymphocytic leukemia and multiple myeloma. The present review will describe the latest findings on the role of FBW7 in hematological tumors, in order to identify a novel target for future therapies.

Autoři článku: Hartviggarza6753 (Fyhn Johannsen)