Hartvigbennett3889
Attending to the shades of grey in eating disorder recovery may help to illuminate possibilities for navigating recoveries in their full complexity and diversity. There is a need for more complexity and flexibility in understandings of the timelines, processes, endpoints, and versions of eating disorder recoveries. In this article, we explore eating disorder recovery as a dynamic, intercorporeal, and non-linear process. Drawing on interviews with 20 people doing significantly better than they were during a time of acute distress around food and body, we articulate "recoveries" in relation to four themes Fuzzy Logics of Time, Not Only Recovered, Recovery is Not All Sunshine and Rainbows, and The Life of Recovery. These themes speak to the ways in which participants struggled to articulate the temporalities of their recoveries, situated recovery as one among many events and processes that shaped their being in the world, resisted "too perfect" articulations of recovery journeys/ endpoints, and described preferred versions of and open-ended guidelines for recovery. We argue that eating disorder recoveries are as complicated and messy as lives themselves and are equally entangled in social contexts. PCO371 mw We suggest that articulations of recovery be attuned to power dynamics as they operate in dictating which performances of eating disorders and recovery will be honoured as "legitimate" and whose pathways to recovery will be respected.Process-based coupled model of stomatal conductance-photosynthesis-transpiration was developed to estimate simultaneously stomatal conductance gsw, photosynthetic rate Pn, and transpiration rate Tr during leaf ontogeny. The modified Jarvis model was constructed by superposing the influence of leaf age LA on gsw in traditional Jarvis model. And the modified Farquhar model was constructed by incorporating the relationships of the LA with parameters in Farquhar model into traditional Farquhar model. The average and leaf-age-based coupled models were constructed, respectively, by combining traditional Farquhar and Penman-Monteith models with traditional Jarvis, and combining modified Farquhar and Penman-Monteith models with modified Jarvis. The results showed that the gsw, the maximum rate of carboxylation, maximum rate of electron transport, rate of triose phosphates utilization, and mitochondrial respiration rate varied in a positive skew pattern, while the mesophyll diffusion conductance decreased linearly with increase in LA. The average coupled model underestimated gsw, Pn, and Tr for young leaves and overestimated gsw, Pn, and Tr for old leaves. And the leaf-age-based coupled model generally perfected well in estimating gsw, Pn, and Tr for all leaves during leaf ontogeny. The study will provide basic information for either modeling leaf gsw, Pn, and Tr continuously, or upscaling them from leaf to canopy scale by considering the variation of LA within canopy.Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder caused by absence of dystrophin protein. Dystrophin is expressed in muscle, but also in the brain. Difficulties with attention/inhibition, working memory and information processing are well described in DMD patients but their origin is poorly understood. The default mode network (DMN) is one of the networks involved in these processes. Therefore we aimed to assess DMN connectivity in DMD patients compared to matched controls, to better understand the cognitive profile in DMD. T1-weighted and resting state functional MRI scans were acquired from 33 DMD and 24 male age-matched controls at two clinical sites. Scans were analysed using FMRIB Software Library (FSL). Differences in the DMN were assessed using FSL RANDOMISE, with age as covariate and threshold-free cluster enhancement including multiple comparison correction. Post-hoc analyses were performed on the visual network, executive control network and fronto-parietal network with the same methods. In DMD patients, the level of connectivity was higher in areas within the control DMN (hyperconnectivity) and significant connectivity was found in areas outside the control DMN. No hypoconnectivity was found and no differences in the visual network, executive control network and fronto-parietal network. We showed differences both within and in areas outside the DMN in DMD. The specificity of our findings to the DMN can help provide a better understanding of the attention/inhibition, working memory and information processing difficulties in DMD.Coronavirus diseases 2019 (COVID-19) are seriously affecting human health all over the world. Nucleotide inhibitors have promising results in terms of its efficacy against different viral polymerases. In this study, detailed molecular docking and dynamics simulations are used to evaluate the binding affinity of a clinically approved drug, sofosbuvir, with the solved structure of the viral protein RNA-dependent RNA polymerase (RdRp) and compare it to the clinically approved drug, Remdesivir. These drugs are docked onto the three-dimensional structure of the nsp12 protein of SARS-CoV-2, which controls the polymerization process. Hence, it is considered one of the primary therapeutic targets for coronaviruses. Sofosbuvir is a drug that is currently used for HCV treatment; therefore, HCV RdRp is used as a positive control protein target. The protein dynamics are simulated for 100 ns, while the binding is tested during different dynamics states of the SARS-CoV-2 RdRp. Additionally, the drug-protein complexes are further simulated for 20 ns to explore the binding mechanism. The interaction of SARS-CoV-2 RdRp as a target with the active form of sofosbuvir as a ligand demonstrates binding effectiveness. One of the FDA-approved antiviral drugs, such as sofosbuvir, can help us in this mission, aiming to limit the danger of COVID-19. Sofosbuvir was found to bind nsp12 with comparable binding energies to that of Remdesivir, which has been reported for its potential against COVID-19 RdRp and is currently approved by the FDA.Short synthetic peptide molecules which bind to a specific target protein with a high affinity to exert its function are known as peptide aptamers. The high specificity of aptamers with small-molecule targets (metal ions, dyes and theophylline; ATP) is within 1 pM and 1 μM range, whereas with the proteins (thrombin, CD4 and antibodies) it is in the nanomolar range (which is equivalent to monoclonal antibodies). The recently identified coronavirus (SARS-CoV-2) genome encodes for various proteins, such as envelope, membrane, nucleocapsid, and spike protein. Among these, the protein necessary for the virus to enter inside the host cell is spike protein. The work focuses on designing peptide aptamer targeting the spike receptor-binding domain of SARS-CoV-2. The peptide aptamer has been designed by using bacterial Thioredoxin A as the scaffold protein and an 18-residue-long peptide. The tertiary structure of the peptide aptamer is modeled and docked to spike receptor-binding domain of SARS CoV2. Molecular dynamic simulation has been done to check the stability of the aptamer and receptor-binding domain complex.