Hartmanbentzen0698
574 for NEE and 0.558 for NPP. this website The SEM results indicated that in the daytime PAR exerted significant direct and indirect effects on both NEE and NPP, and the standardized direct and indirect effects were -0.668 and 0.022, respectively, for NEE, and the effects were 0.655 and -0.011, respectively for NPP. Like PAR, soil water content also exerted significant direct and indirect effects on both NEE and NPP, but the remaining factors affecting CO2 exchange only have one of the direct or indirect effects, sometimes neither. For CO2 exchange at night, the leaf area was the most important variable and presented an importance score of 0.72 for NEE and 0.45 for NPP. At night, both the direct and indirect effects of most abiotic factors on NEE and NPP were significant.We are faced with many challenges such as climate change, environmental pollution, ecosystem deterioration, water scarcity, and deepened socioeconomic inequality. However, there is no consistent framework to explain the interactions between environmental changes and human activities. Therefore, we propose a total socioenvironmental analytical framework (TSEAF) based on the society-nature coevolution theory. TSEAF unifies all components concerning the society-nature coevolution into one system, assimilates biophysical and socioeconomic datasets into a unified database, and unifies analytical methods with assimilated datasets for an integrated analysis. We illustrate TSEAF through a case study on grassland productivity in Inner Mongolia, China. The results of the case study suggested that socioeconomic development covariated with eco-environmental changes. The directions and strengths of covariation decided the interaction dynamics between humans and natural systems. Climatic change and socioeconomic transformation equally affected the productivity of the grassland. Precipitation and temperature remarkably increased (decreased) the grassland productivity when their long-term trends of change were similar (dissimilar). The socioeconomic goals often contradicted each other and displayed mixed impact on the grassland production, thereby showing obvious spatial disparities. The results indicated an urgent need to balance the conflicting socioeconomic targets for sustainable development. In brief, the case study illustrated how to assimilate a unified socioenvironmental database and integrate appropriate analytical methods with the available datasets. It successfully demonstrated the applicability of TSEAF. The proposed framework can be used to examine various other coupled socioenvironmental systems or other geographic areas.The paper emphasizes the main lessons learned from hydromorphological monitoring following the removal of a medium-sized dam (7.29 m) located on a medium energy gravel bed river over a four year period (2015-2019). The Pierre Glissotte dam was previously located on the upper Yonne river (Morvan massif), where it was an obstacle to sediment continuity and was almost completely filled with sand and silts. The dam was removed in two steps, the first in July 2015 and the second in October 2017. Several methods were used (topographical surveys, SFM photogrammetry, RFID tracking, hydrological monitoring) to characterize river adjustments, i.e. the nature of the morpho-sedimentary dynamics, their rates, their temporal and spatial variations, and their control mechanisms. The results highlight the complex and nonlinear response of the Yonne river and the relevance of a regular prolonged monitoring. The changing patterns in space and over time, underline the vast range of uncertainties surrounding this type of restoration and the difficulty involved in predicting post-removal hydromorphology around the dam (return to pre-dam functioning, no changes, new equilibrium conditions). For instance, up to now, the study shows that intense morpho-sedimentary dynamics in the reservoir and effective restoration of bedload continuity do not necessarily lead to changes in the downstream conditions (bed mobility and morphological configuration) previously shaped under the influence of the dam, thus mitigating the success of the river restoration operation.Today, the livestock industry is considered to be one of the biggest emitters of ammonia in the world. The nitrogen present in livestock manure has been linked to the contamination of water bodies. Livestock manures contain a significant quantity of recoverable nitrogen. Recovering nitrogen from livestock manure can minimize negative environmental consequences. This also presents an opportunity to generate some revenue by converting the captured nitrogen to marketable nitrogenous fertilizers. Substantial research efforts have been made toward recovering nitrogen from raw as well as digested livestock manures over the last decade. Many novel technologies as well as ones that have already been implemented to recover nitrogen from municipal wastewaters have been studied for their use in the livestock sector. This paper reviews the common manure nitrogen-recovery technologies reported in the literature, summarizes their efficiencies, discusses their pros and cons, and identifies the areas for future research. Owing to their higher ammonia recovery efficiencies, relatively fewer drawbacks, lower costs, and ability to produce ammonium fertilizers, air stripping by direct aeration, thermal vacuum stripping, and gas-permeable membrane stripping appear to be the most viable choices for livestock farmers. Further studies should focus on the economic feasibility, long-term performance on the manure of varying strengths, and the quality of recovered nitrogenous products.Highly permeable reverse osmosis (RO) membranes are desirable for alleviating the energy burden and ensuring future water sustainability. Herein, the effectiveness of green plasticizer-assisted interfacial polymerization (GPAIP) for preparing polyamide thin-film composite (TFC) RO membranes with significantly enhanced water permeability was demonstrated. The presence of green citrate plasticizers, namely tributyl citrate (TBC) or acetyl tributyl citrate (ATBC), led to the formation of new hydrogen bonds and inhibited the formation of the initial interchain amide-amide bonding, thus markedly reducing chain rigidity as demonstrated by the decreased elasticity modulus. More flexible polyamide chains resulted in the creation of more ultrafast water channels during filtration. Furthermore, TBC-modified membranes exhibited more elastic polyamide layers and higher water flux than that of ATBC-modified membranes on account of the presence of both hydrogen bond acceptors (OH) and hydrogen bond donors (C=O) in TBC molecules.