Hardervang0779
The results showed that ADPC cells acquired tolerance for androgen deprivation due to the exosome-mediated communication between cells. AIPC cell-derived exosomes promoted the transformation of ADPC cells into androgen-independent cells in vivo and in vitro. Microarray analysis revealed that HMOX1 in ADPC cells was up-regulated after treatment with AIPC cell-derived exosomes. Further results showed that HMOX1 is overexpressed in human AIPC specimens and protects ADPC cells from androgen deprivation.
Our findings revealed that exosomes contribute to CRPC progression via promoting the transition of prostate cancer cells into an androgen-independent growth stage by activating HMOX1.
Our findings revealed that exosomes contribute to CRPC progression via promoting the transition of prostate cancer cells into an androgen-independent growth stage by activating HMOX1.
In this study, we used MTT assays to demonstrate that a combination of SPIO-Serum and wild-type p53 overexpression can reduce ovarian cancer cell viability
. Prussian blue staining and iron assays were used to determine changes in intracellular iron concentration following SPIO-Serum treatment. TEM was used to evaluate any mitochondrial damage induced by SPIO-Serum treatment, and Western blot was used to evaluate the expression of the iron transporter and lipid peroxidation regulator proteins. JC-1 was used to measure mitochondrial membrane potential, and ROS levels were estimated by flow cytometry. Finally, xCT protein expression and mitochondrial ROS levels were confirmed using fluorescence microscopy.
SPIO-Serum effectively induced lipid peroxidation and generated abundant toxic ROS. It also facilitated the downregulation of GPX4 and xCT, ultimately resulting in iron-dependent oxidative death. These effects could be reversed by iron chelator DFO and lipid peroxidation inhibitor Fer-1. SPIO-Serum treatment disrupted intracellular iron homeostasis by regulating iron uptake and the cells presented with missing mitochondrial cristae and ruptured outer mitochondrial membranes. Moreover, we were able to show that p53 contributed to SPIO-Serum-induced ferroptosis in ovarian cancer cells.
SPIO-Serum induced ferroptosis and overexpressed p53 contributed to ferroptosis in ovarian cancer cells. Our data provide a theoretical basis for ferroptosis as a novel cell death phenotype induced by nanomaterials.
SPIO-Serum induced ferroptosis and overexpressed p53 contributed to ferroptosis in ovarian cancer cells. Our data provide a theoretical basis for ferroptosis as a novel cell death phenotype induced by nanomaterials.
Rapamycin is a promising agent for treating tumors, but clinical applications of rapamycin are limited due to its poor water solubility and low bioavailability. This paper constructs a liposome delivery system for rapamycin to improve the effect in treating colorectal cancer.
We prepared the rapamycin liposomes using the ethanol injection method. The cellular uptake and biodistribution were detected by LC-MS and in vivo imaging system. MTT assay, transwell migration experiment, flow cytometry, and Western blot analysis evaluated the antitumor effect of rapamycin liposomes in vitro. Furthermore, HCT-116 tumor-bearing mice were used to assess the therapeutic efficacy of rapamycin liposomes in vivo.
The prepared rapamycin liposomes had a particle size of 100±5.5 nm and with a narrow size distribution. In vitro cellular uptake experiments showed that the uptake of rapamycin liposomes by colorectal cells was higher than that of free rapamycin. Subsequently, in vivo imaging experiments also demonstrated that rapamycin liposomes exhibited higher tumor accumulation. Selleckchem IWP-2 Therefore, the ability of rapamycin liposomes to inhibit tumor proliferation, migration and to induce tumor apoptosis is superior to that of free rapamycin. We also demonstrated in vivo good antitumor efficacy of the rapamycin liposomes in HCT-116 xenograft mice. In addition, rapamycin liposomes and 5-FU can synergistically improve the efficacy of colorectal cancer via the Akt/mTOR and P53 pathways.
Collectively, rapamycin liposomes are a potential treatment for colorectal cancer, as it not only improves rapamycin's antitumor effect but also synergistically enhances 5-FU's chemotherapy effect.
Collectively, rapamycin liposomes are a potential treatment for colorectal cancer, as it not only improves rapamycin's antitumor effect but also synergistically enhances 5-FU's chemotherapy effect.Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Radiotherapy occupies an essential position as one of the most significant approaches for the clinical treatment of cancer. However, we cannot overcome the shortcoming of X-rays which is the high value of the oxygen enhancement ratio (OER). Radiosensitizers with the ability to enhance the radiosensitivity of tumor cells provide an alternative to changing X-rays to protons and heavy ion radiotherapy.
We prepared the Au-Pt nanoparticles (Au-Pt NPs) using a one-step method. The characteristics of the Au-Pt NPs were determined using TEM, HAADF-STEM, elemental mapping images, and DLS. The enhanced radiotherapy was demonstrated in vitro using MTT assays, colony formation assays, fluorescence imaging, and flow cytometric analyses of the apoptosis. The biodistribution of the Au-Pt NPs was analyzed using ICP-OES, and thermal images. The enhanced radiotherapy was demonstrated in vitro using immunofluorescence images, tumor volume and weigh, and hematoxylin & eosin (H&E) staining.
Polyethylene glycol (PEG) functionalized nanoparticles composed of the metallic elements Au and Pt were designed to increase synergistic radiosensitivity.