Hallbender9629
Fodder beet (FB) is a source of readily fermentable carbohydrate that can mitigate early spring herbage deficits and correct the negative energy balance experienced during early lactation in pastoral dairy systems of New Zealand. However, the low-fiber and high-soluble carbohydrate content of both FB bulb and spring herbage are factors that promote subacute ruminal acidosis, impairing rumen function and limiting the marginal milk production response to supplement. Dihydromyricetin In a crossover experiment, 8 Holstein Friesian × Jersey early-lactation dairy cows were used to test the effect of supplementing 16 kg of dry matter (DM) of a grazed perennial ryegrass herbage with 6 kg of DM/d of FB bulb (FBH) versus herbage only (HO) on changes in rumen function and grazing behavior. Following 20 d of adaptation to diets, DM disappearance (%) of FB bulb (FBH cows only) and herbage were measured in sacco, separately. Cows were fasted overnight, and the ruminal contents were bailed the following morning (~0930 h) again to determine ndicate that grazing dairy cows supplemented with FB (40% of daily intake) increase rumination and mastication intensity to counteract reduced ruminal degradation of ryegrass herbage due to low ruminal fluid pH.The dry-off of dairy cows represents an important phase of the lactation cycle, influencing the outcome of the next lactation. Among the physiological changes, the severity of the inflammatory response can vary after the dry-off, and this response might have consequences on cow adaptation in the transition period. The plasma protein profile is a diagnostic tool widely used in humans and animals to assess the inflammatory status and predict the outcome of severe diseases. The albumin-to-globulin ratio (AG) can represent a simple and useful proxy for the inflammatory condition. In this study, we investigated the relationship between AG before dry-off and inflammation, metabolic profile, and performance of 75 Holstein dairy cows. Blood samples were collected from -62 (7 d before dry-off) to 28 d relative to calving (DFC) to measure metabolic profile biomarkers, inflammatory variables, and liver function. Daily milk yield in the first month of lactation was recorded. Milk composition, body condition score, fertilpregnancy than IN and LO cows. Overall, cows with high AG before dry-off showed an improved adaptation to the new lactation, as demonstrated by a reduced systemic inflammatory response and increased milk yield than cows with low AG. In conclusion, the AG ratio before dry-off might represent a rapid and useful proxy to evaluate the innate immune status and likely the ability to adapt while switching from the late lactation to the nonlactating phase and during the transition period with emphasis on early lactation.We conducted a descriptive observational study to quantify the frequency and diversity of winter housing and bedding types used by organic dairy farmers in Vermont. This report describes the survey methods, results, successes, limitations, and lessons learned from administering the survey. Beginning in December 2018, a short questionnaire was administered by web, mail, and telephone to a source population defined as all producers of organic dairy cow milk in Vermont (n = 177) listed in the United States Department of Agriculture Organic Integrity database. Our approach yielded an 82% (n = 145) response from certified organic farms producing cow milk in Vermont at the time of the survey. The 3 most common housing and bedding material combinations used by respondents were tiestall housing with wood (sawdust or shavings) bedding materials (45%), freestall housing with wood bedding materials (14%), and freestall housing with sand bedding (12%). Fifteen percent of respondents reported using more than one type of facility for winter housing of lactating cattle. The median number of lactating cows on farms among respondents was 59.5 (range 2-400), and the odds of using more than one type of facility to house lactating cows increased positively with the number of lactating cows reported for a herd. Breed distribution was similar across the housing and bedding type categories. An association between frequency of individual cow milk somatic cell count testing and housing type was identified; respondents using freestall sand facilities tested less frequently than respondents using tiestalls with wood bedding. Although the questionnaire length limited the amount of information gathered, the response proportion was exceptional, and overall our survey results provide valuable insight on Vermont organic dairy housing and bedding practices that should inform future extension and outreach efforts for this sector of the dairy industry.The consequences of supplementing Lys, Met, and Thr in milk replacers (MR) for calves have been widely studied, but scarce information exists about potential roles of other AA (whether essential or not). The effects on growth performance of supplementation of 4 different AA combinations in a mixed ration (25.4% crude protein and 20.3% fat) based on skim milk powder and whey protein concentrate were evaluated in 76 Holstein male calves (3 ± 1.7 d old). The 4 MR were as follows CTRL with no AA supplementation; PG, supplying additional 0.3% Pro and 0.1% Gly; FY, supplying additional 0.2% Phe and 0.2% Tyr; and KMT, providing additional 0.62% Lys, 0.22% Met, and 0.61% Thr. All calves were fed the same milk allowance program and were weaned at 56 d of study. Concentrate intake was limited to minimize interference of potential differences in solid feed intake among treatments. Animals were weighed weekly, intakes recorded daily, and blood samples obtained at 2, 5, and 7 wk of study to determine serum urea and plasma AA concentrations. Plasma AA concentrations were explored using compositional data analysis, and their isometric log-ratio transformations were used to analyze their potential influence on ADG and serum urea concentration using a linear mixed-effects model. We detected no differences in calf performance and feed intake. Plasma relative concentration of the AA supplemented in the KMT and PG treatments increased in their respective treatments, and, in PG calves, a slight increase in the proportion of plasma Gly, Glu, and branched-chain AA was also observed. The proportions of plasma branched-chain AA, His, and Gln increased, and those of Thr, Arg, Lys, and Glu decreased with calves' age. A specific log-contrast balance formed by Arg, Thr, and Lys was found to be the main driver for lowering serum urea concentrations and increasing calf growth. The use of compositional mixed-effects models identified a cluster formed by the combination of Arg, Thr, and Lys, as a potential AA to optimize calf growth.