Haldlandry3907

Z Iurium Wiki

Ti6Al4V alloy has been widely used in many fields, such as aerospace and medicine, due to its excellent biocompatibility and mechanical properties. Most high-performance components made of Ti6Al4V alloy usually need to be polished to produce their specific functional requirements. However, due to the material properties of Ti6Al4V, its polishing process still requires significant development. Therefore, this study aimed to investigate the performance of polishing Ti6Al4V by using tools with different rigidities. Two kinds of bonnet tool were used, namely a pure rubber (PR) bonnet and a semirigid (SR) bonnet. The characterization of material removal and surface integrity after polishing was conducted through a series of experiments on a 6-DOF robotic polishing device. The results demonstrate that both bonnet tools successfully produce nanometric level surface roughness. Moreover, the material removal rate of the SR bonnet tool is significantly higher than that of the PR bonnet, which is consistent with the material removal characteristics of glass polishing in previous research. this website In addition, the presented analysis on key polishing parameters and surface integrity lays the theoretical foundation for the polishing process of titanium alloy in different application fields.In this work, Al alloys with 6.6%, 10.4%, and 14.6% Si were deposited as thick coatings by Friction Surfacing (FS), resulting in grain refinement and spheroidization of needle-shaped eutectic Si phase. Lubricated sliding wear tests were performed on a pin-on-disc tribometer using Al-Si alloys in as-cast and FS processed states as pins and 42CrMo4 steel discs. The chemical composition of the worn surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The wear mechanisms were studied by scanning electron microscopy (SEM) and focused ion beam (FIB), and the wear was evaluated by measuring the weight loss of the samples. For the hypoeutectic alloys, spheroidization of the Si phase particles in particular leads to a significant improvement in wear resistance. The needle-shaped Si phase in as-cast state fractures during the wear test and small fragments easily detach from the surface. The spherical Si phase particles in the FS state also break away from the surface, but to a smaller extent. No reduction in wear due to FS was observed for the hypereutectic alloy. Here, large bulky primary Si phase particles are already present in the as-cast state and do not change significantly during FS, providing high wear resistance in both material states. This study highlights the mechanisms and limitations of improved wear resistance of Si-rich Al alloys deposited as thick coatings by Friction Surfacing.An important goal to achieve sustainable development is to use raw materials that are easily recyclable and renewable, locally available, and eco-friendly. Sheep wool, composed of 60% animal protein fibers, 10% fat, 15% moisture, 10% sheep sweat, and 5% contaminants on average, is an easily recyclable, easily renewable, and environmentally friendly source of raw material. In this study, slump testing, compressive and flexural strengths, ultrasonic pulse velocity, sorptivity, and chloride penetration tests were investigated to assess the influence of wool fibers on the strength and transport properties of concrete composites. Ordinary Portland cement was used to make five concrete mixes incorporating conventional wool fibers (WFs) ranging from 0.5 to 2.5% and a length of 70 mm. The wool fibers were modified (MWFs) via a pre-treatment technique, resulting in five different concrete compositions with the same fiber content. The addition of WF and MWF to fresh concrete mixes resulted in a decrease in slump values. The compressive strength of concrete was reduced when wool fibers were added to the mix. The MWF mixes, however, achieved compressive strength values of more than 30 MPa after a 90-day curing period. Furthermore, by including both WF and MWF, the flexural strength was higher than that of plain concrete. In addition, adding fibers with volume fractions of up to 2% reduced the concrete composite's sorptivity rate and chloride penetration depths for both WF and MWF content mixes. Consequently, biomass waste like sheep wool could be recycled and returned to the field following the circular economy and waste valorization principles.Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan's surface for modification. UV-Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich's isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV-Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illusGraphene research and technology development requires to reveal adsorption processes and understand how the defects change the physicochemical properties of the graphene-based systems. In this study, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and graphene-enhanced Raman spectroscopy (GERS) coupled with density functional theory (DFT) modeling were applied for probing the structure of riboflavin adsorbed on single-layer graphene substrate grown on copper. Intense and detailed vibrational signatures of the adsorbed riboflavin were revealed by SHINERS method. Based on DFT modeling and detected downshift of prominent riboflavin band at 1349 cm-1 comparing with the solution Raman spectrum, π-stacking interaction between the adsorbate and graphene was confirmed. Different spectral patterns from graphene-riboflavin surface were revealed by SHINERS and GERS techniques. Contrary to GERS method, SHINERS spectra revealed not only ring stretching bands but also vibrational features associated with ribityl group of riboflavin and D-band of graphene. Based on DFT modeling it was suggested that activation of D-band took place due to riboflavin induced tilt and distortion of graphene plane. The ability to explore local perturbations by the SHINERS method was highlighted. We demonstrated that SHINERS spectroscopy has a great potential to probe adsorbed molecules at graphene.We report on the formation of Ag-containing ZrCuAlNi thin film metallic glass (nano)composites by a hybrid direct-current magnetron sputtering and high-power pulsed magnetron sputtering process. The effects of Ag content, substrate temperature and substrate bias potential on the phase formation and morphology of the nanocomposites were investigated. While applying a substrate bias potential did not strongly affect the morphological evolution of the films, the Ag content dictated the size and distribution of Ag surface segregations. The films deposited at low temperatures were characterized by strong surface segregations, formed by coalescence and Ostwald ripening, while the volume of the films remained featureless. At higher deposition temperature, elongated Ag segregations were observed in the bulk and a continuous Ag layer was formed at the surface as a result of thermally enhanced surface diffusion. While microstructural observations have allowed identifying both surface and bulk segregations, an indirect method for detecting the presence of Ag segregations is proposed, by measuring the electrical resistivity of the films.The creation of concrete shells from customized prefabricated modules is a novel approach that facilitates the construction of free-form surfaces considerably. In the framework of the Adaptive Concrete Diamond Construction (ACDC) project at TU Dresden, a material for 3D printing of the outer contours of such modules has been developed based on the principles of Strain Hardening Cementitious Composite (SHCC). In addition to its high ductility, the required material must also be suitable for 3D printing while enabling the achievement of high geometric accuracy in the manufacture of the modules. To gain the required performance, cellulose ether and starch ether were used specifically to extend the open time, for a longer period of maintaining initial workability, as well as for enhancing shape stability and surface quality. An extensive experimental program was carried out to evaluate the outcomes of the material modifications, including flow table tests, water retention tests, and several specific tests to determine the adhesiveness of the fresh SHCC. For hardened SHCC, surface roughness was assessed using a laser 3D scanner in addition to testing its mechanical properties.Fuel cells are expected to serve as next-generation energy conversion devices owing to their high energy density, high power, and long life performance. The oxygen reduction reaction (ORR) is important for determining the performance of fuel cells; therefore, using catalysts to promote the ORR is essential for realizing the practical applications of fuel cells. Herein, we propose Nb-incorporated TiO2 as a suitable alternative to conventional Pt-based catalysts, because Nb doping has been reported to improve the conductivity and electron transfer number of TiO2. In addition, Nb-incorporated TiO2 can induce the electrocatalytic activity for the ORR. In this paper, we report the synthesis method for Nb-incorporated TiO2 through a hydrothermal process with and without additional load pressures. The electrocatalytic activity of the synthesized samples for the ORR was also demonstrated. In this process, the samples obtained under various load pressures exceeding the saturated vapor pressure featured a high content of Nb and crystalline TiNb2O7, resulting in an ellipsoidal morphology. X-ray diffraction results also revealed that, on increasing the Nb doping amounts, the diffraction peak of the anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This implies that the Ti atom is exchanged with the Nb atom during this process, resulting in a decrease in TiO2 crystallinity. At a doping level of 10%, Nb-incorporated TiO2 exhibited the best electrocatalytic activity in terms of the oxygen reduction current (iORR) and onset potential for the ORR (EORR); this suggests that 10% Nb-doped samples have the potential for enhancing electrocatalytic activity.The effect of 0-1.0 at.% Al additions on grain refinement and phase transformation of the Mg-2.0Gd-1.2Y-0.5Zn-0.2Mn (at.%) alloy containing a long period stacking ordered (LPSO) phase was investigated in this work. The addition of Al promoted the formation of the Al2RE phase in the Mg-2.0Gd-1.2Y-0.5Zn-0.2Mn (at.%) alloy, and the dominant secondary phases in the as-cast Mg-2.0Gd-1.2Y-0.5Zn-0.2Mn-1.0Al (at.%) alloy were the Mg3RE phase, LPSO phase, and Al2RE phase. With increased Al addition, the area fraction of the Al2RE phase increased monotonously, while the area fraction of LPSO phase and Mg3RE phase decreased gradually. The orientation relationship between the Al2RE phase and the α-Mg matrix was determined to be <112>Al2RE//<112¯0>α-Mg, 101Al2RE//101¯0α-Mg, which was not affected by Zn and Mn concentrations in the Al2RE phase. Since the Al2RE particles with a size more than 6 μm located at the center of grains could act as nucleants for α-Mg grains, the average grain size of the as-cast alloys decreased from 276 μm to 49 μm after 1.

Autoři článku: Haldlandry3907 (Sumner Nymand)