Hagenjuarez8697

Z Iurium Wiki

Hospital-acquired infections can be acquired by a patient or develop among hospital staff, as a more serious problem in low- and middle-income hospital settings. Assessing the level of knowledge, attitude and practice towards hospital-acquired infection prevention among healthcare workers and identifying the associated factors has an unquestionable importance of handling and management of these infections. Thus, in this study, we evaluated the knowledge, attitude and practice towards HAIs prevention and associated factors in healthcare workers at the University of Gondar Comprehensive Specialized Hospital, North West Ethiopia.

Hospital-based cross-sectional study was conducted among healthcare workers towards HAIs prevention from January to June 2019. Each study participant was selected by simple random sampling. Data were collected using structured self-administered questionnaires. Descriptive analysis was used to present frequency and percentage of the main findings. The association between independent tandard operational procedures (SOP) may reduce the identified gap.

Even though the respondents have good knowledge with a sympathetic attitude about HAI preventions, good knowledge did not translate into prudent practices. Level of education and work experience were the independent risk factors towards HAI prevention of attitude and practice. Provision of continual on-job and off-job trainings together with strict implementation of updated standard operational procedures (SOP) may reduce the identified gap.

This study was designed to characterize the dissemination mechanism and genetic context of

carbapenemase (KPC) genes in carbapenem-resistant

(CRKP) isolates.

A retrospective analysis was performed on CRKP strains isolated from a teaching hospital of Wenzhou Medical University during 2015-2017. Polymerase chain reaction (PCR)-based amplification and whole-genome sequencing (WGS) were used to analyze the genetic context of the



gene. Conjugation experiments were performed to evaluate the transferability of



-bearing plasmids. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to investigate the clonal relatedness of



-producing strains.

The



gene was identified from 13.61% (40/294) of clinical

isolates. Three different sequence types (ST11, ST15 and ST656) and 5 PFGE subtypes (A to E) were classified among them. ST11 was the dominant sequence type (92.50%, 37/40). Plasmid-oriented antibiotic resistance genes, such as extended spectrum-β-lactia with different genetic backgrounds. The dissemination of blaKPC-bearing plasmids that collectively carry additional multidrug resistance genes has caused widespread public concern, further limiting the antibiotics available to treat infections caused by KPC-producing pathogens.

LncRNA H19 expression is down-regulated in patients with asthma. The hyperplasia of airway smooth muscle cells (ASMCs) promotes the development of airway remodeling in asthma. Therefore, we attempted to evaluate the regulatory function of H19 in the proliferation and migration of ASMCs.

The expressions of H19 and miR-21 were detected using qRT-PCR. PDGF-BB-induced abnormal proliferation and migration of ASMCs was used as the airway remodeling model in vitro. The expressions of H19 and miR-21 were modified by transfection with pcDNA3.1-H19 and miR-21 mimic, respectively. CCK-8 assay, flow cytometry-based cell cycle analysis was conducted to examine the proliferation ability of ASMCs. The migration ability was measured by transwell assay. Dual-luciferase reporter system was carried out to find the potential relationship between miR-21 and H19 or PTEN. Western blot was conducted to detect the expressions of PCNA, MMP-9, α-SMA, PTEN, and the phosphorylation level of Akt.

LncRNA-H19 expression was decreased and microRNA-21 expression was increased in serum samples of children with asthma and PDGF-BB-stimulated ASMCs. Overexpression of H19 reduced the proliferation and migration ability of ASMCs with PDGF-BB treatment and these changes were reversed by miR-21 mimic. H19 promoted the protein level of PTEN via sponging miR-21. Overexpression of H19 suppressed miR-21-induced phosphorylation of Akt, and the suppression effect of H19 on phosphorylation of Akt was significantly reduced after transfecting shPTEN in ASMCs.

In this study, overexpression of H19 suppressed the proliferation and migration of ASMCs induced by PDGF-BB via miR-21/PTEN/Akt axis, which could be a potential biomarker and target for treating hyperplasia of airway smooth muscle cells.

In this study, overexpression of H19 suppressed the proliferation and migration of ASMCs induced by PDGF-BB via miR-21/PTEN/Akt axis, which could be a potential biomarker and target for treating hyperplasia of airway smooth muscle cells.

LncRNAs are functional regulators in tumor progression which act by regulating mRNAs in multiple types of cancer. However, the effect of lnc-UCID on hepatocellular carcinoma (HCC) metastasisremains unclear.

Lnc-UCID expression was quantified in HCC tissues and HCC cell lines by qRT-PCR. HCC cell lines with lnc-UCID knockdown were established by lentivirus transduction. The migration and invasion abilities of HCC cells were analyzed by Transwell and wound-healing assays. Protein expression of epithelial-mesenchymal transition (EMT)-related factors was examined by Western blot assay. DC661 ic50 Dual-luciferase assays and actinomycin D treatment were conducted to explore the relationship between lnc-UCID and Snail mRNA. The direct interaction between lnc-UCID and Snail mRNA was subjected to quantification analysis by biotinylated lnc-UCID pulldown assays. Pearson's correlation coefficient was used to analyze correlations between lnc-UCID and Snail expression level in clinical samples. Rescue experiments were performed to uncover the role of Snail in the HCC metastasis process.

Lnc-UCID was upregulated in human HCC tissues and HCC cell lines. Lnc-UCID promoted the cells' mobility and invasiveness by enhancing the EMT process of HCC cells. The expression of Snail positively correlated with lnc-UCID abundance, and the interaction between lnc-UCID and Snail mRNA prevented miR-122, miR-203, miR-30b, miR-34a or miR-153 binding to the 3'-UTR of Snail. Transfection of Snail greatly rescued the migration and invasion of HCC cells.

Lnc-UCID was upregulated in clinical HCC samples and directly interacted with Snail mRNA to enhance the stability of Snail mRNA, thus promoting the EMT process to accelerate HCC metastasis.

Lnc-UCID was upregulated in clinical HCC samples and directly interacted with Snail mRNA to enhance the stability of Snail mRNA, thus promoting the EMT process to accelerate HCC metastasis.

Autoři článku: Hagenjuarez8697 (Marsh Salomonsen)