Haasrobinson4411

Z Iurium Wiki

In this study calcium alginate-multiwall carbon nanotube (CA/MWCNTs) was synthesized using (CA) calcium alginate and multiwall carbon nanotube (MWCNTs), and its efficiency in adsorption of 4-Nitrophenol (4-NP) in aqueous solution was studied. The structure and properties of the synthesized adsorbent were investigated using scanning electron microscope (SEM), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The experimental design was performed using Box-Behnken design (BBD) in which variables pH, CA/MWCNTs, and temperature were examined. The results of the effect of temperature on the removal efficiency of 4-NP showed that the adsorption efficiency decreases with increasing temperature. The results of nonlinear isotherm and kinetics models showed that Langmuir and pseudo-second-order models were more consistent than other models. The maximum adsorption capacity of 4-NP in this study by CA, MWCNTs, and CA/MWCNTs was 136, 168.4, and 58.8 mg/g, respectively, which indicates that the use of MWCNTs on CA could increase the adsorption capacity. The results of reuse of the synthesized adsorbent at 4-NP removal also showed that after 5 reuse of the adsorbent, the removal of 4-NP using CA/MWCNTs is reduced by about 10%, which shows that the synthesized adsorbent can be used several times to adsorb contaminants without significant reduction in the efficiency.Natural macromolecules have attracted increasing attention due to their biocompatibility, low toxicity, and biodegradability. Pectin is one of the few polysaccharides with biomedical activity, consequently a candidate in biomedical and drug delivery Applications. Rhamnogalacturonan-II, a smaller component in pectin, plays a major role in biomedical activities. The ubiquitous presence of hydroxyl and carboxyl groups in pectin contribute to their hydrophilicity and, hence, to the favorable biocompatibility, low toxicity, and biodegradability. However, pure pectin-based materials present undesirable swelling and corrosion properties. The hydrophilic groups, via coordination, electrophilic addition, esterification, transesterification reactions, can contribute to pectin's physicochemical properties. 1,4-Diaminobutane Here the properties, extraction, and modification of pectin, which are fundamental to biomedical and drug delivery applications, are reviewed. Moreover, the synthesis, properties, and performance of pectin-based hybrid materials, composite materials, and emulsions are elaborated. The comprehensive review presented here can provide valuable information on pectin and its biomedical and drug delivery applications.Cellulose nanocrystals (CNCs) were successfully produced with good nanoscales and dispersibility, using a recycled sulfuric acid (H2SO4) hydrolysis process. This method, at the cost of an overall 25% increase in the hydrolysis time, could significantly reduce the dosage of H2SO4 by approximately 40% without affecting the per-batch yield and performance of CNCs. The obtained CNCs with an average diameter of 6.0-6.5 nm and an average length of 126-134 nm, were successfully applied in the preparation of oil-in-water (O/W) Pickering emulsions via high-pressure homogenization. The emulsions exhibited good storage stability when the concentration of CNC was 1.0 wt%. Further, understanding the wetting behaviors of surface modified CNCs with solvent is critical for the functional designing of Pickering emulsion. Hence, we gained insights into the wetting of hydrophobic and hydrophilic surfaces of sulfate modified CNCs with water and organic solvent (hexadecane) droplets, using molecular dynamic simulation. The results showed that both surfaces had hydrophilic as well as lipophilic properties. Although the sulfate-grafted surface was more hydrophilic than unmodified CNC, substantial local wetting heterogeneities appeared for both solvents. It provides a deeper understanding of the interfacial interactions between modified CNCs and solvent molecules at the molecular level.Nanostructured materials along with an added value of polymers-based support carriers have gained high interest and considered ideal for enzyme immobilization. The recently emerged nanoscience interface in the form of nanostructured materials combined with immobilized-enzyme-based bio-catalysis has now become research and development frontiers in advance and applied bio-catalysis engineering. With the involvement of nanoscience, various polymers have been thoroughly developed and exploited to nanostructured engineer constructs as ideal support carriers/matrices. Such nanotechnologically engineered support carriers/matrix possesses unique structural, physicochemical, and functional attributes which equilibrate principal factors and strengthen the biocatalysts efficacy for multipurpose applications. In addition, nano-supported catalysts are potential alternatives that can outstrip several limitations of conventional biocatalysts, such as reduced catalytic efficacy and turnover, low mass transfer efficiency, instability during the reaction, and most importantly, partial, or complete inhibition/deactivation. In this context, engineering robust and highly efficient biocatalysts is an industrially relevant prerequisite. This review comprehensively covered various biopolymers and nanostructured materials, including silica, hybrid nanoflower, nanotubes or nanofibers, nanomembranes, graphene oxide nanoparticles, metal-oxide frameworks, and magnetic nanoparticles as robust matrices for cellulase immobilization. The work is further enriched by spotlighting applied and industrially relevant considerations of nano-immobilized cellulases. For instance, owing to the cellulose-deconstruction features of nano-immobilized cellulases, the applications like lignocellulosic biomass conversion into industrially useful products or biofuels, improved paper sheet density and pulp beat in paper and pulp industry, fruit juice clarification in food industry are evident examples of cellulases, thereof are discussed in this work.

Pulmonary hypertension (PH) is a serious lung disease that caused by cellular proliferation, vascular wall inflammation and fibrosis. MicroRNAs (miRNAs) have been known to participate in the pathogenesis of PH and could be used to treat PH. In this study, we investigated the molecular mechanism of a miRNA candidate and its roles in the process of hypoxic PH.

The hypoxic PH model was established in SD rats treated with 10% O

for 21 days. The change of body weight, the hemodynamic index, the right ventricular remodeling index and the pulmonary artery remodeling were monitored during treatments. CCK8 and Transwell assay were applied for detection of the primary pulmonary artery smooth muscle cells (PASMCs) activity and migration.

High expression of HIF-1α and low expression of miR-92b-3p were found in pulmonary artery and primary PASMCs of hypoxia-treated rats. Overexpression of miR-92b-3p or suppression of HIF-1α inhibited hypoxia-induced pulmonary remodeling, inflammatory cytokines and proliferation/migration of primary PASMCs.

Autoři článku: Haasrobinson4411 (Curran Bartlett)