Haasguldborg9823

Z Iurium Wiki

This work presents how it is quite significant to further enhance the ionic conductivity of SCEs by developing the novel SPEs with the special morphology of ICEs for advanced all-solid-state lithium batteries. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Cancer stem cells (CSCs) are the main cause of tumor development, metastasis, and relapse. CSCs are thus considered promising targets for cancer therapy. However, it is hard to eradicate CSCs due to their inherent plasticity and heterogeneity, and the underlying mechanism of the switch between non-CSCs and CSCs remains unclear. Here, it is shown that miR-135a combined with SMYD4 activates Nanog expression and induces the switch of non-CSCs into CSCs. The miR-135a level, once elevated, lowers the methylation level of the CG5 site in the Nanog promoter by directly targeting DNMT1. SMYD4 binds to the unmethylated Nanog promoter to activate Nanog expression in Nanog-negative tumor cells. The in vivo regulation of miR-135a levels could significantly affect both the CSCs proportion and tumor progression. These findings indicate that DNA methylation of the Nanog promoter modulates the switch of non-CSCs into CSCs under the control of the miRNA-135 level. In addition, the related pathways, miR-135a/DNMT1 and SMYD4, involved in these processes are potential targets for CSC-targeted therapy. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.As the power conversion efficiency (PCE) of perovskite solar cells (PSCs) is increased to as high over 25%, it becomes pre-eminent to study a scalable process with wide processing window to fabricate large-area uniform perovskite films with good light-trapping performance. A stable and uniform intermediate-state complex film is obtained by using tetramethylene sulfoxide (TMSO), which extends the annealing window to as long as 20 min, promotes the formation of a high-quality perovskite film with larger grains (over 400 nm) and spontaneously forms the surface texture to result in an improved fill factor and open-circuit voltage (V oc). Moreover, the superior surface texture significantly increases the long-wavelength response, leading to an improved short-circuit current density (J sc). As a result, the maximum PCE of 21.14% is achieved based on a simple planar cell structure without any interface passivation. Moreover, a large area module with active area of 6.75 cm2 is assembled using the optimized TMSO process, showing efficiency as high as 16.57%. The study paves the way to the rational design of highly efficient PSCs for potential scaled-up production. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Millions worldwide suffer from arthritis of the hips, and total hip replacement is a clinically successful treatment for end-stage arthritis patients. Typical hip implants incorporate a cobalt alloy (Co-Cr-Mo) femoral head fixed on a titanium alloy (Ti-6Al-4V) femoral stem via a Morse taper junction. However, fretting and corrosion at this junction can cause release of wear particles and metal ions from the metallic implant, leading to local and systemic toxicity in patients. This study is a multiscale structural-chemical investigation, ranging from the micrometer down to the atomic scale, of the underlying mechanisms leading to metal ion release from such taper junctions. Correlative transmission electron microscopy and atom probe tomography reveals microstructural and compositional alterations in the subsurface of the titanium alloy subjected to in vitro gross-slip fretting against the cobalt alloy. Even though the cobalt alloy is comparatively more wear-resistant, changes in the titanium alloy promote tribocorrosion and subsequent degradation of the cobalt alloy. These observations regarding the concurrent occurrence of electrochemical and tribological phenomena are vital to further improve the design and performance of taper junctions in similar environments. © 2020 The Authors. CT99021 Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Humic acid, as a natural organic matter, is widely distributed in surface soil, oceans, rivers, and other ecological environments throughout the whole earth ecosystem. Humic acid provides abundant organic carbon and helps to maintain a hydrated, pH and redox buffered environment hosting the soil microbiome. Humic acid is however also a largely ignored polymer material full of exciting functional properties, and its scale is enormous. link2 This perspective article discusses its synthesis and management as a tool to tackle parts of the climate crisis as well its use in technological applications, as made by chemical conversion of agricultural side products to artificial humic acids. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.3D electrode design is normally opted for multiple advantages, however, instability/detachment of active material causes the pulverization and degradation of the structure, and ultimately poor cyclic stability. Here, a dually protected, highly compressible, and freestanding anode is presented for sodium-ion batteries, where 3D carbon nanotube (CNT) sponge is decorated with homogeneously dispersed CoSe2 nanoparticles (NPs) which are protected under carbon overcoat (CNT/CoSe2/C). The 3D CNT sponge delivers enough space for high mass loading while providing high mechanical strength and faster conduction pathway among the NPs. The outer amorphous carbon overcoat controls the formation of solid electrolyte interphase film by avoiding direct contact of CoSe2 with electrolyte, accommodates large volume changes, and ultimately enhances the overall conductivity of cell and assists in transmitting electron to an external circuit. Moreover, the hybrid can be densified up to 11-fold without affecting its microstructure that results in ultrahigh areal mass loading of 17.4 mg cm-2 and an areal capacity of 7.03 mAh cm-2 along with a high gravimetric capacity of 531 mAh g-1 at 100 mA g-1. Thus, compact and smart devices can be realized by this new electrode design for heavy-duty commercial applications. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.In recent years, there has been an upsurge in the study of novel and alternative energy storage devices beyond lithium-based systems due to the exponential increase in price of lithium. Sodium (Na) metal-based batteries can be a possible alternative to lithium-based batteries due to the similar electrochemical voltage of Na and Li together with the thousand times higher natural abundance of Na compared to Li. Though two different kinds of Na-O2 batteries have been studied specifically based on electrolytes until now, very recently, a hybrid Na-air cell has shown distinctive advantage over nonaqueous cell systems. Hybrid Na-air batteries provide a fundamental advantage due to the formation of highly soluble discharge product (sodium hydroxide) which leads to low overpotentials for charge and discharge processes, high electrical energy efficiency, and good cyclic stability. Herein, the current status and challenges associated with hybrid Na-air batteries are reported. Also, a brief description of nonaqueous Na-O2 batteries and its close competition with hybrid Na-air batteries are provided. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Mobile organisms with ability for locomotion and transportation, such as humans and other animals, utilize orchestrated actuation to perform actions. Mimicking these functionalities in synthetic, light-responsive untethered soft-bodied devices remains a challenge. Inspired by multitasking and mobile biological systems, an untethered soft transporter robot with controlled multidirectional locomotion with the ability of picking up, transporting, and delivering cargo driven entirely by blue light is created. The soft robot design is an ensemble of light-responsive liquid crystalline polymers that can harness motion either collectively or individually to obtain a high degree of motion control for the execution of advanced tasks in a dry environment. Through orchestrated motion of the device's "legs", single displacement strides, which exceed 4 mm and can be taken in any direction, allow for locomotion around objects. Untethered cargo transportation is demonstrated by a pickup and release mechanism using the device's "arms". This strategy demonstrates the constructive harnessing of orchestrated motion in assemblies of established actuators, performing complex functions, mimicking constructive behavior seen in nature. © 2020 The Authors. link3 Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Rational design of unique pre-catalysts for highly active catalysts toward catalyzing the oxygen evolution reaction (OER) is a great challenge. Herein, a Co-derived pre-catalyst that allows gradual exposure of CoOOH that acts as the active center for OER catalysis is obtained by both phosphate ion surface functionalization and Mo inner doping. The obtained catalyst reveals an excellent OER activity with a low overpotential of 265 mV at a current density of 10 mA cm-2 and good durability in alkaline electrolyte, which is comparable to the majority of Co-based OER catalysts. Specifically, the surface functionalization produces lots of Co-PO4 species with oxygen vacancies which can trigger the surface self-reconstruction of pre-catalyst for a favorable OER reaction. Density functional theory calculations reveal that the Mo doping optimizes adsorption-free energy of *OOH formation and thus accelerates intrinsic electrocatalytic activity. Expanding on these explorations, a series of transition metal oxide pre-catalysts are obtained using this general design strategy. The work offers a fundamental understanding toward the correlation among surface-structure-activity for the pre-catalyst design. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.Terahertz (THz) photon detection is of particular appealing for myriad applications, but it still lags behind efficient manipulation with electronics and photonics due to the lack of a suitable principle satisfying both high sensitivity and fast response at room temperature. Here, a new strategy is proposed to overcome these limitations by exploring the photothermoelectric (PTE) effect in an ultrashort (down to 30 nm) channel with black phosphorus as a photoactive material. The preferential flow of hot carriers is enabled by the asymmetric Cr/Au and Ti/Au metallization with the titled-angle evaporation technique. Most intriguingly, orders of magnitude field-enhancement beyond the skin-depth limit and photon absorption across a broadband frequency can be achieved. The PTE detector has excellent sensitivity of 297 V W-1, noise equivalent power less than 58 pW/Hz0.5, and response time below 0.8 ms, which is superior to other thermal-based detectors at room temperature. A rigorous comparison with existing THz detectors, together with verification by further optical-pumping and imaging experiments, substantiates the importance of the localized field effect in the skin-depth limit. The results allow solid understanding on the role of PTE effect played in the THz photoresponse, opening up new opportunities for developing highly sensitive THz detectors for addressing targeted applications. © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Autoři článku: Haasguldborg9823 (Mccray Melendez)