Haahrdominguez6397
These days, research in agriculture is focusing on the theme of sustainability along with protection of agriculture produce. Nanotechnology in the agriculture sector aims for the enhancement of agricultural produce and the reduction of pesticides through providing innovative agrochemical agents and their novel delivery mechanisms. The current investigation involved the green synthesis of silver nanoparticles (AgNPs) from the aqueous leaf extract of Melia azedarach by following a microwave-assisted method to control Fusarium oxysporum, the causal agent of tomato wilt. Biosynthesized Melia leaf extract (MLE)-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectrometry, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zeta potential analysis. The intensity of the peak at 434 nm in UV-vis spectra, attributed to the surface plasmon resonance of M oxygen species (ROS) production in F. oxysporum after treatment with MLE-AgNPs. The current investigation suggested that biosynthesized nanoparticles can revolutionize the field of plant pathology by introducing an environment-friendly approach for disease management and playing a potential part in agriculture industry. However, to date, little work has been done to integrate nanotechnology into phytopathology so, this area of research is in need of adoption and exploration for the management of plant diseases. Copyright © 2020 Ashraf, Anjum, Riaz and Naseem.Biosurfactants are amphiphilic molecules which showed application in the food, medical, and cosmetics industries and in bioremediation. In this study, a marine sponge-associated bacteria (MSI 54) was identified as a biosurfactant producer which showed high emulsification and surface tension-reducing property. The isolate MSI 54 was identified as Bacillus sp. and the biosurfactant was chemically characterized as a lipopeptide analog based on the spectral data including Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The MSI 54 lipopeptide biosurfactant was an anionic molecule which showed high affinity toward cationic heavy metals including Pb, Hg, Mn, and Cd. The heavy metal bioremediation efficacy of the biosurfactant was evaluated using atomic absorption spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy analysis. When MSI 54 lipopeptide biosurfactant was added to heavy metals, this resulted in a white co-precipitate of the metal-biosurfactant complex. The heavy metal remediation efficacy of the biosurfactant at a 2.0 × critical micelle concentration (CMC) showed removal of 75.5% Hg, 97.73% Pb, 89.5% Mn, and 99.93% Cd, respectively, in 1,000 ppm of the respective metal solution. The surface treatment of farm fresh cabbage, carrot, and lettuce with 2.0 × CMC of the lipopeptide showed effective removal of the surface heavy metal contaminants. Copyright © 2020 Ravindran, Sajayan, Priyadharshini, Selvin and Kiran.Background and Aim Cronobacter sakazakii (C. sakazakii) has attracted considerable attention as an emerging neonatal pathogen and has been associated with outbreaks of life-threatening septicemia, necrotizing enterocolitis, and meningitis in neonates and infants globally. No data about the role of C. sakazakii as a cause of neonatal sepsis in North Africa is availale. Herein, we aimed to study the incidence of C. sakazakii in cases of neonatal sepsis, its distribution in different food samples in Egypt, antimicrobial profile, and the ability of the strains to form biofilms. Methods A total of 100 positive blood cultures from cases of neonatal sepsis admitted to the neonatal ICU at Assiut University Children's Hospital, Egypt, were analyzed. In addition, 1,100 food samples, including 400 powdered infant formula (PIF), 500 herbs, and 200 water samples were screened for the presence of C. sakazakii. We evaluated the antimicrobial profile and the ability of the strains to form biofilms. Omilancor Results Cronobacter sakazaand El-Mokhtar.Biological control is emerging as a feasible alternative to chemical pesticides in agriculture. Measuring the microbial biocontrol agent (mBCA) populations in the environment is essential for an accurate environmental and health risk assessment and for optimizing the usage of an mBCA-based plant protection product. We hereby show a workflow to obtain a large number of qPCR markers suitable for robust strain-specific quantification. The workflow starts from whole genome sequencing data and consists of four stages (i) identifying the strain-specific sequences, (ii) designing specific primer/probe sets for qPCR, and (iii) empirically verifying the performance of the assays. The first two stages involve exclusively computer work, but they are intended for researchers with little or no bioinformatic background Only a knowledge of the BLAST suite tools and work with spreadsheets are required; a familiarity with the Galaxy environment and next-generation sequencing concepts are strongly advised. All bioinformatic work can be implemented using publicly available resources and a regular desktop computer (no matter the operating system) connected to the Internet. The workflow was tested with five bacterial strains from four different genera under development as mBCAs and yielded thousands of candidate markers and a triplex qPCR assay for each candidate mBCA. The qPCR assays were successfully tested in soils of different natures, water from different sources, and with samples from different plant tissues. The mBCA detection limits and population dynamics in the different matrices are similar to those in qPCR assays designed by other means. In summary, a new accessible, cost-effective, and robust workflow to obtain a large number of strain-specific qPCR markers is presented. Copyright © 2020 Hernández, Sant, Martínez and Fernández.Campylobacter jejuni is a major foodborne pathogen worldwide. As it forms biofilms, it can become a persistent contaminant in the food and pharmaceutical industries. In this study, it was demonstrated that C. jejuni could make more biofilm in aerobic conditions than in microaerobic conditions, and only 13.9% C. jejuni entered coccus (a VBNC state) under microaerobic conditions; however, the rate increased to 95.5% under aerobic conditions. C. jejuni could form more biofilm in mixed culture with Escherichia coli or Pseudomonas aeruginosa than in pure culture. Scanning electron microscope results showed that C. jejuni retained its normal spiral shape under aerobic conditions for 48 h by forming crosslinks with the aerobic and facultative anaerobic bacteria. Additionally, culture medium containing 0.5 mg/ml ZnO nanoparticles inhibited biofilm formation. Our results provide information on a new approach to controlling contamination via C. jejuni. Copyright © 2020 Zhong, Wu, Zhang, Ma, Wang, Nie, Ding, Xue, Chen, Wu, Wei and Zhang.