Gutierrezswanson8020

Z Iurium Wiki

Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.CAR-engineered T cell immunotherapy has proven transformative in selected hematological malignancies. However, solid tumors largely remain impervious to these approaches. In addressing this challenge, Srivastava et al. in this issue demonstrate that oxaliplatin-based lymphodepleting chemotherapy promotes enhanced CAR T cell recruitment to lung tumors, boosting therapeutic impact in combination with anti-PD-L1.Deubiquitylating enzymes (DUBs) counteract ubiquitylation to control stability or activity of substrates. Identification of DUB substrates is challenging because multiple DUBs can act on the same substrate, thwarting genetic approaches. Here, we circumvent redundancy by chemically inhibiting multiple DUBs simultaneously in Xenopus egg extract. We used quantitative mass spectrometry to identify proteins whose ubiquitylation or stability is altered by broad DUB inhibition, and confirmed their DUB-dependent regulation with human orthologs, demonstrating evolutionary conservation. We next extended this method to profile DUB specificity. By adding recombinant DUBs to extract where DUB activity was broadly inhibited, but ubiquitylation and degradation were active at physiological rates, we profiled the ability of DUBs to rescue degradation of these substrates. We found that USP7 has a unique ability to broadly antagonize degradation. Together, we present an approach to identify DUB substrates and characterize DUB specificity that overcomes challenges posed by DUB redundancy.Extended-spectrum cephalosporin (ESC) resistance remains a threat since ESC are important antimicrobials used to treat infections in humans and animals. Escherichia coli is an important source of ESC-resistance genes, such as those encoding extended-spectrum β-lactamases (ESBLs). E. coli is a common commensal of lambs. Reports that contaminated food can be a source of ESC-resistant bacteria in humans and that ESBL-producing E. coli are found in sheep in Brazil led us to survey their presence in retail lamb meat. Twenty-five samples intended for human consumption were screened for ESC-resistant E. https://www.selleckchem.com/products/pf-06882961.html coli, and the isolates were characterized. IncI1-blaCTX-M-8 and IncHI2-blaCTX-M-2 were the main plasmids responsible for ESC resistance. The plasmids harbored common ESBL genes in Enterobacteriaceae from food-producing animals in Brazil. IncI1-blaCTX-M-14 and IncF-blaCTX-M-55 plasmids, associated with human infections, were also detected. Few CTX-M-producing E. coli have been clustered by typing methods, and some may be genetically pathogenic. The findings indicate the presence of diverse strains of E. coli, harboring important ESBL genes, in lamb meat in Brazil. Surveillance of ESC-resistant bacteria could reduce the spread of antimicrobial resistance through the food chain.

Autoři článku: Gutierrezswanson8020 (Upton Finn)