Gustafssonpappas4362

Z Iurium Wiki

Learning is a complex phenomenon and education researchers are increasingly focussing on processes that go into it. Eye tracking has become an important tool in such research. In this paper, we focus on one of the most commonly used metrics in eye tracking, namely, fixation duration. Fixation duration has been used to study cognition and attention. However, fixation duration distributions are characteristically non-normal and heavily skewed to the right. Therefore, the use of a single average value, such as the mean fixation duration, to predict cognition and/or attention could be problematic. This is especially true in studies of complex constructs, such as learning, which are governed by both cognitive and affective processes. We collected eye tracking data from 51 students watching a 12 min long educational video with and without subtitles. The learning gain after watching the video was calculated with pre- and post-test scores. Several multiple linear regression models revealed a) fixation duration can explain a substantial fraction of variation in the pre-post data, which indicates its usefulness in the study of learning processes; b) the arithmetic mean of fixation durations, which is the most commonly reported eye tracking metric, may not be the optimal choice; and c) a phenomenological model of fixation durations where the number of fixations over different temporal ranges are used as inputs seemed to perform the best. The results and their implications for learning process research are discussed.While many studies have characterized the eye movements during visual fixation, includ-ing microsaccades, in most cases only horizontal and vertical components have been rec-orded and analyzed. Thus, little is known about the torsional component of microsaccades. We took advantage of a newly developed software and hardware to record eye movements around the three axes of rotation during fixation and torsional optokinetic stimulus. We found that the average amplitude of the torsional component of microsaccades during fixation was 0.34 ± 0.07 degrees with velocities following a main sequence with a slope comparable to the horizontal and vertical components. We also found the size of the tor-sional displacement during microsaccades was correlated with the horizontal but not the vertical component. In the presence of an optokinetic stimulus a nystagmus was induced producing a more frequent and larger torsional quick phases compared to microsaccades produced during fixation with a stationary stimulus. The torsional component and the vertical vergence component of quick phases grew larger with higher velocities. Addition-ally, our results validate and show the feasibility of recording torsional eye movements using video eye tracking in a desktop mounted setup.Here, we provide an analysis of the microsaccades that occurred during continuous visual search and targeting of small faces that we pasted either into cluttered background photos or into a simple gray background. Subjects continuously used their eyes to target singular 3-degree upright or inverted faces in changing scenes. As soon as the participant's gaze reached the target face, a new face was displayed in a different and random location. Regardless of the experimental context (e.g. background scene, no background scene), or target eccentricity (from 4 to 20 degrees of visual angle), we found that the microsaccade rate dropped to near zero levels within only 12 milliseconds after stimulus onset. There were almost never any microsaccades after stimulus onset and before the first saccade to the face. One subject completed 118 consecutive trials without a single microsaccade. However, in about 20% of the trials, there was a single microsaccade that occurred almost immediately after the preceding saccade's offset. These microsaccades were task oriented because their facial landmark targeting distributions matched those of saccades within both the upright and inverted face conditions. Our findings show that a single feedforward pass through the visual hierarchy for each stimulus is likely all that is needed to effectuate prolonged continuous visual search. In addition, we provide evidence that microsaccades can serve perceptual functions like correcting saccades or effectuating task-oriented goals during continuous visual search.A large body of literature documents the sensitivity of pupil response to cognitive load (1)and emotional arousal (2). Recent empirical evidence also showed that microsaccade characteristics and dynamics can be modulated by mental fatigue and cognitive load (3). Very little is known about the sensitivity of microsaccadic characteristics to emotional arousal. The present paper demonstrates in a controlled experiment pupillary and microsaccadic responses to information processing during multi-attribute decision making under affective priming. Twenty-one psychology students were randomly assigned into three affective priming conditions (neutral, aversive, and erotic). Participants were tasked to make several discriminative decisions based on acquired cues. MRT67307 In line with the expectations, results showed microsaccadic rate inhibition and pupillary dilation depending on cognitive effort (number of acquired cues) prior to decision. These effects were moderated by affective priming. Aversivepriming strengthened pupillary and microsaccadic response to information processing effort.In general, results suggest that pupillary response is more biased by affective priming than microsaccadic rate. The results are discussed in the light of neuropsychological mechanisms of pupillary and microsaccadic behavior generation.Fatigue is a major complaint in MS. Up to now no objective assessment tools have been established which hampers any treatment approach. Previous work has indicated an association of fatigue with cognitive measures of attention. Oculomotor tests have been established in healthy individuals as a read-out of fatigue, and to some extent in MS patients. Based on these observations we compared two groups of MS patients, one with fatigue (n=28) and one without fatigue (n=21) and a group of healthy subjects (n=15) with a standardised computerised measure of alertness and an oculomotor stress test. Patients with fatigue showed highly significant changes of their saccade dynamics as defined by the Main Sequence and Phase Plane plots They showed slowing of saccades, the characteristical fatigue double peak, and an asymmetrical phase plane. Oculomotor tests differentiated significantly between fatigue and fatigabiliy in our MS patients. They also showed significantly worse performance in the alertness test as well as in the oculomotor task.

Autoři článku: Gustafssonpappas4362 (Frazier Boye)