Guptapickett4883
It is observed that typically three features MTV (Metabolic tumour Volume), primary tumour site and GLCM_correlation are significant for prediction of survival outcome. For testing cohort, GBDT achieves a balanced accuracy of 88%, where conventional statistical model reported a balanced accuracy of 81.5%.
The proposed classifier achieves higher accuracy than the state of the art technique. Using this classifier we can estimate the HNSCC patient's outcome, and depending upon the outcome treatment policy can be selected.
The proposed classifier achieves higher accuracy than the state of the art technique. Using this classifier we can estimate the HNSCC patient's outcome, and depending upon the outcome treatment policy can be selected.Liquid phase produced by the subcritical hydrothermal liquefaction (HTL) of livestock manure is extensively used in agronomic and environmental applications, but the potential risks caused by inherent pollutants (e.g., roxarsone, ROX) of the livestock manure have not been considered. This study shows that less toxic ROX is completely converted into highly toxic As(III) and As(V) in the HTL reaction with temperature more than 240 °C. Moreover, more than 81.5% of As is distributed in the liquid phase generated by the livestock manure HTL reaction. Notably, the hydrothermal products of livestock manure facilitate the conversion of As(V) to As(III). The resulting hydrochar and aldehydes act as electron donors for As(V) reduction, thus resulting in the formation of As(III). Furthermore, the dissociated As promotes the depolymerization and deoxygenation of the macromolecular compounds to produce more small oxygen-containing compounds such as aldehydes, further boosting the As(V) reduction to As(III). These results indicate that the liquid phase of the livestock manure has potential risks in applications as a fertilizer. Such findings have substantial implications in biomass utilization and redox reactions of envirotechnical and biogeochemical relevance.In this study, we present a novel soil electrochemical remediation technology (called S-FCDI), which is based on flow-electrode capacitive deionization (FCDI), for Cd removal from kaolin while under continuous operation mode. The results demonstrated that Cd can be effectively removed from kaolin with reasonable energy consumption and minimal macroelement loss. The carboxylic (OOH) functional groups on the surface of activated carbon (AC) facilitated the transfer of Cd from kaolin onto carbon surface. A stable acidic environment, which is advantageous for continuous Cd desorption, was achieved as a result of the balance between H+ generation and transmembrane migration. Once these net negative charges on the particle were eliminated or reversed, the adsorbed Cd could be released easily and driven in concentrated stream by electrostatic repulsion. Under the optimal operating conditions (i.e., carbon =50 g/L, j = 3.47 A/m2, pHi = 3.2, [NaCl]a =8.6 mmol/L), more than 80 % Cd was removed from (200 g) kaolin after continuous 19 h operation at a relatively low electricity consumption of 22.7 kW h/kg Cd and a limited Al loss of 0.06 wt‰. this website These results from this work demonstrated that S-FCDI could be an alternative soil electrochemical remediation technology for heavy metal removal with low soil damage.It is generally accepted that CeTiOx catalyst owns outstanding catalytic activity for ammonia-selective catalytic reduction (NH3-SCR), but the tolerance to alkali metals is still dissatisfactory. Thus, it is of great importance to further elevate the catalytic activity and resistance to alkali metals of CeTiOx catalyst. In our work, a series of CeTiOx, CuO/CeTiOx, K-CeTiOx and K-CuO/CeTiOx catalysts were prepared to comprehensively analyze the influence of CuO modification on the physicochemical features, catalytic activity and anti-K ability of CeTiOx catalyst. The results manifest that CuO modification effectively enhances low-temperature catalytic activity and anti-K poisoning ability of CeTiOx catalyst by protecting the reduction ability and the surface acidity as well as weakening the adsorption strength of NOx.This study proposes the capture of dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) from waste gas using an ionic liquid (IL), namely, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]), and examines the process from a molecular level to the laboratory scale, which is then scaled up to the industrial level. The binding energy and weak interactions between DMS/DMDS and the anion/cation in [EMIM][Tf2N] were investigated using quantum chemistry calculations to identify the capture mechanism at the molecular scale. A thermodynamic model (UNIFAC-Lei) was established by the vapor-liquid equilibrium data of the [EMIM][Tf2N] + DMS/DMDS systems measured at the laboratory scale. The equilibrium and continuous absorption experiments were performed, and the results demonstrated that [EMIM][Tf2N] exhibits a highly efficient capture performance at atmospheric conditions, particularly, absorption capacities (AC) for DMS and DMDS are 189.72 and 212.94 mg g-1, respectively, and partial coefficients (PC) as more reasonable evaluation metrics for those are 0.509 × 10-4 and 6.977 × 10-4 mol kg-1 Pa-1, respectively, at the 100 % breakthrough. Finally, a mathematical model of the strict equilibrium stage was established for process simulations, and the absorption process was conceptually designed at the industrial scale, which could provide a decision-making basis for chemical engineers and designers.
Aluminum (Al) has been reported to induce testicular injury via oxidative stress. Ananas comosus stem extract is an inexpensive byproduct waste rich in bromelain which is a group of sulfur-containing enzymes known for its biological activities and medicinal applications. So, the current investigation aims to evaluate the efficacy of bromelain in counteracting oxidative injury and testicular dysfunction stimulated by aluminum in rats.
Male adult Wistar rats were divided into four groups. The first group used as control, however, the second and third groups were received bromelain (250 mg/kg) and AlCl
(34 mg/Kg, 1/25 LD
), and the fourth group supplemented with bromelain one hour before AlCl
intoxication, respectively. Bromelain was administered daily while AlCl
was given every other day by oral gavages for one month.
Al intoxicated animals revealed an elevation in lipid peroxidation (TBARS and H
O
) level and lactate dehydrogenase (LDH) activity. However, reduced glutathione (GSH) and protein contents, antioxidant enzymes (SOD, CAT, GPx, GR, GST), phosphatases (ALP, AcP) and aminotransferases (AST, ALT) activities were significantly reduced.