Guldagerlinde7856
arbon source and growth phase strongly determine the production potential, chemical nature, and fouling behavior of SMPs.The rapid and efficient degradation of polycyclic aromatic hydrocarbon (PAH) derivatives with toxicological properties remains a substantial challenge. Selleck PR-619 In this study, a cost-effective and eco-friendly catalyst, nano-MoO2 (0.05 g L-1), exhibited excellent performance in activating 4.0 mmol L-1 peroxymonosulfate (PMS) for the degradation of naphthalene derivatives with 1 mg L-1 in aqueous systems; these derivatives include 1-methylnaphthalene, 1-nitronaphthalene, 1-chloronaphthalene, 1-naphthylamine and 1-naphthol, with high degradation rates of 87.52%, 86.23%, 97.87%, 99.74%, and 77.16%. Nano-MoO2 acts as an electron donor by transferring an electron causing O-O bond of PMS to cleave producing SO4·-, and later ·OH. Electron paramagnetic resonance (EPR) analysis combined with free radical quenching research indicated that SO4·- and ·OH dominated the degradation of naphthalene derivatives, and O2·- and 1O2 participated in the processes. X-ray photoelectron spectroscopy (XPS) revealed the transformation of Mo(IV) to Mo(V) and Mo(VI), which suggested that the activation process proceeded via electron transfer from nano-MoO2 to PMS. The applicability of the nano-MoO2/PMS system in influencing parameters and stability was explored. The degradation pathways were primarily elucidated for each naphthalene derivative based on the intermediates identified in the systems. The -CH3, -NO2, -Cl, -OH substituents increased the positive electrostatic potential (ESP) on the molecular surface of 1-methylnaphthalene, 1-nitronaphthalene, 1-chloronaphthalene, and 1-naphthol, which reduced the electrophilic reaction and electron transfer between the reactive species and pollutants, leading to a lower degradation rate of naphthalene derivatives than the parent compound. However, the effect of -NH2 substituents is the opposite. These findings suggest that nano-MoO2 may aid as a novel catalyst in the future remediation of environments polluted with PAH derivatives.Pharmaceutically active compounds (PhACs) widely present in urban wastewater effluents pose a threat to ecosystems in the receiving aquatic environment. In this work, efficiency of granular activated carbon (GAC) - based catalytic processes, namely catalytic wet peroxide oxidation (CWPO), peroxymonosulfate oxidation (PMS/GAC) and peroxydisulfate oxidation (PDS/GAC) at ambient temperature and pressure were studied for removal of 22 PhACs (ng L-1 level) that were present in secondary effluents of real urban wastewater. Concentrations of PhACs were measured using Ultra Performance Liquid Chromatography - Triple Quadrupole Mass Spectrometry (UPLC-QqQ-MS/MS). Catalytic experiments were conducted in discontinuous mode using up-flow fixed bed reactors with granular activated carbon (GAC) as a catalyst. The catalyst was characterized by means of N2 adsorption-desorption isotherm, mercury intrusion porosimetry (MIP), elemental analysis, X-ray fluorescence spectroscopy (WDXRF), X-ray diffraction (XRD), thermal gravimetite high efficiency of all studied processes for PhACs elimination from urban wastewater effluent, CWPO seems to be more promising for continuous operation.Engineering of versatile binding chemistry on graphene oxide surface using nucleophilic substitution/amidation reactions for highly efficient adsorption of Cd (II), Cu (II) and Pb (II) is herein proposed. Graphene oxide (GO) was used as a precursor for covalent bonding of hexamethylenediamine (HMDA) molecules via the nucleophilic substitution/amidation reactions on epoxy (COC) and carboxyl (COOH) groups to yield hexamethylenediamine functionalized graphene oxide (GO-HMDA) with multiple binding chemistries such as oxygen and nitrogen. Afterwards, GO-HMDA was encapsulated in alginate hydrogel beads with different loadings 5, 10, 15 and 20 wt% to produce Alg/GO-HMDA hybrid adsorbents for the removal of trace heavy metal ions from aqueous solution. Batch adsorption studies showed remarkable adsorption rates reaching 100% for Pb (II), 98.18% for Cu (II) and 95.19 for Cd (II) (~1 mg L-1) with only 15 wt% of GO-HMDA incorporated into the alginate beads. Moreover, Alg/GO-HMDA showed high removal efficiencies of heavy metals from tap water with a removal order of (Pb > Cu > Cd) similar to that observed in single aqueous solution. In Addition, the Alg/GO-HMDA adsorbents displayed excellent regeneration ability for six consecutive adsorption-desorption cycles confirming the high performance and potential of these adsorbents, for real heavy metals remediation in environment and in drinking waters in both single and multiple systems. Finally, the adsorption mechanism of traces heavy metals resulted from several phenomena including the electrostatic interactions occurring between the COOH groups of Alginate and the GO-HMDA surface groups as well as, through chelation interactions occurring between the metal cations and amino-functionalized groups of Alg/GO-HMDA 15 hybrid adsorbent.
Nanoparticles removal from seawage water is a health and environmental challenge, due to the increasing use of these materials of excellent colloidal stability. Herein we hypothesize to reach this objective through complex coacervation, a straightforward, low-cost process, normally accomplished with non-toxic and biodegradable macromolecules. Highly dense polymer-rich colloidal droplets (the coacervates) obtained from a reversible charge-driven phase separation, entrap suspended nanomaterials, allowing their settling and potential recovery.
In this work we apply this process to highly stable aqueous colloidal dispersions of different surface charge, size, type and state (solid or liquid). We systematically investigate the effects of the biopolymers excess and the nanomaterials concentration and charge on the encapsulation and sedimentation efficiency and rate. This strategy is also applied to real laboratory water-based wastes.
Long-lasting colloidal suspensions are succesfully destabilized through coacscalable, low-cost and ecofriendly alternative to concentrate, separate or recover suspended micro/nanomaterials from aqueous sludges.